

Connections for Life

Creative engineering is our main focus. We understand design, conception and execution to be individually developed solutions in response to the tasks set by our clients.

As an internationally renowned construction company, we design environments, establish permanent connections between people and places and thus achieve perceptible improvements for both clients and users. In short: We create quality of life for the world of tomorrow.

Customer-oriented thinking and responsible actions form the basis of our business. After all, the success of each and every construction project is always closely linked to the quality of cooperation with our clients.

At Wayss & Freytag Ingenieurbau AG more than 145 years of experience and the technological expertise of today converge. A lean structure ensures the optimum realization of our clients' projects. In our competence centres created just for this purpose specialist groups of our best staff work in close cooperation to find the most appropriate solution for every technological challenge.

Wayss & Freytag Ingenieurbau AG is active worldwide in the field of tunnelling. On the international market, the company carries out projects in which it distinguishes itself by its special know-how and excellent performance.

The scope of our activities ranges from mechanized and conventional tunnelling, the construction of sewage treatment plants and power plants, railway, bridge and stadium construction and industrial construction to environmental technology. Engineering consulting, location analyses, utilization concepts and feasibility studies complete our range of services.

Mechanized Tunnelling

In the past Wayss & Freytag was significantly involved in the development of mechanized tunnelling techniques. For example, they initiated the support of the tunnel face by means of a bentonite suspension and air-cushion. With the so-called "slurry shield" this technique was brought to operational maturity. Wayss & Freytag is a pioneer of this technique and has in the meantime driven more than 210 km of tunnel using slurry shields. In addition, more than 99 km of tunnel were driven using earth pressure balance shields and 44 km using hard rock TBMs. Examples of prominent projects in mechanized tunnelling are Westerschelde Tunnel (Netherlands) as well as Katzenberg Tunnel and Finne Tunnel, the longest railway tunnels built in Germany.

Conventional Tunnelling

The construction of tunnels using conventional construction methods has always been a challenge to every engineer. Here, the engineer's most important task is the evaluation of the geology and the selection of the right means of securing the excavation face until final completion of the inner lining. Wayss & Freytag already rose to this challenge in 1905 when building a railway tunnel using the conventional tunnelling method in Wasserburg/Inn in gompholite (Nagelfluh) and gravel.

The range of conventional tunnelling reaches from soft rock tunnelling (e. g. a metro tunnel in Munich gravel) and tunnelling in compressed air (e. g. Ostbahnhof metro station in Munich in Tertiary formations below groundwater) to classic Drill and blast drives (e. g. Rennsteig Tunnel on the A 71 motorway, which, with a length of 8 km, is the longest motorway tunnel in Germany). Total Driven Tunnel Length (km) (Status Oct. 30. 2021)

211,42 km

Hydroshield

99,042 km

44,094 km

Hard Rock TBM

Second Main Line of Munich Suburban Railway
Landsberger Straße Sewer Sytsem Rehabilitaion, Section 2, Munich . 8–9
Überruhr Pipeline Tunnel, Essen
Mauerpark Storage Sewer, Berlin
Gateway Gardens, Frankfurt14–15
Bad Cannstatt Tunnel
Vötting Tunnel
Mine Water Drainage Tunnel, Ibbenbüren
Light Rail Line U 81

Grootveldlaan Storage Sewer, Sint-Pieters-Woluw	24–25
---	-------

Fehmarnbelt Tunnel	7
--------------------	---

Second Main Line of Munich Suburban Railway Germany

General Data:

Project:	Second Main Line of Munich Suburban Railway, Germany
Client:	DB NETZE
	DB Netz AG
	DB Station & Service AG
	DB Energie GmbH
Contractor:	"ARGE Tunnel Hauptbahnhof" Joint Venture
	"ARGE Oberirdisch West" Joint Venture
	Wayss & Freytag Ingenieurbau AG, Ed. Züblin AG,
	Max Bögl Group, BAUER Spezialtiefbau GmbH
Construction period	: 2019 to 2027
Construction costs:	Overall project costs € 865 million

Technical Data:

Scope of works

Contract VE 10: Western Above-Ground Section

Extensive dismantling and new construction of track systems and switches

New construction of two flyover structures and a double-track tiedarch bridge

New construction of a noise barrier bridge and further noise barriers New construction of retaining structures and a tunnel for pedestrians, bicyclists, public-transport buses and the tram) in Laim Complete renewal of Laim Passenger Station, electrical work on lowvoltage and medium-voltage systems, underground cable work

Contract VE 30: Main Station Tunnel

Construction of the approximately 40 m deep access structure using the top-down method with diaphragm walls Platform tunnels constructed using the mining method under compressed air in the track area of the main station New construction of the ramp structure in the western cut-andcover section

Excavation of two suburban railway tunnels with an external diameter of approximately 8.50 m from Donnersberger Bridge to Marienhof Station using

two slurry TBMs, with single-pass segmental lining Four city-centre rescue shafts with connecting structures Extensive special foundation engineering and dewatering measures

Mining method

Construction

method:

Geology:

Silty sand, silt and clay

Utilisation	Infrastructure
Туре	Suburban railway tunnel
Length	○— ○ 2 x 3 km
Construction Method	Slurry TBM and New Austrian Tunnelling Method under compressed air

Landsberger Straße Sewer System Rehabilitation, Section 2, Munich Germany

General Data:

Project:	Landsberger Straße Sewer System Rehabilitation, Section 2,
	Munich, Germany
Client:	Münchner Stadtentwässerung
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	2018 to 2021
Net construction costs:	€19 million

Scope of works:	Constructio	n of sewerage tunnel; length: 980 m + 1,200 m
	Internal dia	meter: 3.00 m
	External dia	ameter: 3.58 m
	Min. radius:	1,000 m
	Min. cover:	3.75 m
	Max. cover:	5.00 m
acking pipes:	Type: DN 30	00 reinforced concrete
	Number: 73	5 pieces
	Length: 3.00) m
	Wall thickne	ess: 0.29 m
Construction method:	Pipe jacking	using an AVND 3000 machine
Geology:	Quaternary	-
	Utilisation	💥 Water/Sewerage
	Туре	Sewerage tunnel
	Length	⊶ 980 and 1,200 m
	Construction Method	Pipe jacking using an AVND 3000 machine

Überruhr Pipeline Tunnel, Essen _{Germany}

General Data:

Project:	Überruhr Pipeline Tunnel, Essen, Germany
Client:	Entwässerung Essen GmbH
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	2018 to 2019
Net construction costs:	€8 million

Scope of works:	Construction of pipeline tunnel; length: 612 m Internal diameter: 1.80 m; External diameter: 2.30 m Min. radius: 430 m Min. cover: 8.00 m Max. cover: 25.00 m Jacking pipes: Type: DN 1800 reinforced concrete Number: 167 pieces Length: 3.00/4.00 m Wall thickness: 0.25 m
Construction method:	Pipe jacking using a slurry shield
Geology:	Marl, clay, sandstone

Construction Method	Pipe jacking using a slurry shield
Length	⊶ 612 m
Туре	Sewerage tunnel
Utilisation	💥 Water/Sewerage

Mauerpark Storage Sewer, Berlin Germany

General Data:

Project:	Mauerpark Storage Sewer, Berlin, Germany
Client:	Berliner Wasserbetriebe (BWB)
Contractor:	Wayss& Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:	2017 to 2019
Net construction costs:	€12 million

Technical Data:

Scope of works:

Geology:

Construction of a storage sewer tunnel, length: 654 m Internal diameter: 3.85 m External diameter: 4.50 m Min. radius: 0.0 m Min. cover: 3.00 m Max. cover: 6.80 m Jacking pipes: Type: DN 3850 concrete Number: 218 pieces Length: 3.00 m Thickness: 0.35 m **Construction method:** Pipe jacking using an EPB shield Boulder clay, medium sand

Utilisation	💥 Water/Sewerage
Туре	Storage sewer tunnel
Length	⊶ 654 m
Construction Method	Pipe jacking – EPB shield

Gateway Gardens Germany

General Data:

Project:	Tunnel Gateway Gardens, Lot 2
Client:	Deutsche Bahn AG
Contractor:	ARGE Tunnel Gateway Gardens, Lot 2,
	Wayss & Freytag Ingenieurbau AG as technical leader of
	a joint venture
Construction period:	February 2016 to December 2019
Net construction costs:	€120 million

Scope of works:	Construction of light railway station Gateway Gardens
	including 2.2 km light railway tunnel
Construction method:	Cut and cover method
Geology:	Soft rock sections, Quartenary sedimentary rocks, cohesive
	Tertiary layers

Utilisation	Þ	Infrastructure
Туре		Railway tunnel, double-track
Length	~~ 0	2,000 m
Construction Method	*	Cut and cover method

Bad Cannstatt Tunnel Germany

General Data:

Project:	Stuttgart 21
	PFA (section) 1.5, Lot 3 Long-distance route from
	Stuttgart Main Station to Bad Cannstatt
Client:	DB Netz AG, Frankfurt/Main represented by
ALL PROPERTY.	DB Projektbau Stuttgart – Ulm GmbH
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	2012 to 2021
Net construction costs:	€ 285 million

Technical Data:

Scope of works:	5050 m single-track and 1050m double-track long-distance railway
The second second	tunnel; A = 70-220 m², 345m single-track and 575m double-track
	suburban railway tunnel, A = 50-100 m²
	790m rescue tunnel; $A = 20 - 40m^2$, approx. 60m deep smoke
	extraction structure, 1 rescue shaft depth = 20m
Construction method:	Drill and blast method and tunnel excavator, reinforced inner lining
	partly with foil sealing Bored pile lining, shotcrete shafts,
	elevation grouting
Geology:	Leached and non-leached gypsum Keuper,
set build of it	partly containing anhydrite

Utilisation	•€	Infrastructure	
Туре	Q	Railway tunnel	
Length	~~	5,050 m, 1,050 m	H
Construction		Drill and blact math	and and

tion Drill and blast method an tunnel excavator

Method

Vötting Tunnel _{Germany}

General Data:

Project:	Tunnel Vötting
Client:	Stadt Freising
Contractor:	Wayss & Freytag Ingenieurbau AG as
	technical leader of a Joint Venture
Construction period:	2017 to 2021
Net construction costs:	58,84 Mio. € (total project)

Technical Data:

Scope of works:	95 m preliminary cut, preliminary cut approx. 35,000 m³	
-	30 m north portal structure	
	462 m tunnel constructed by the mining method:	
	Top heading and bench/invert heading in Tertiary hilly terrain	Geology:
	Spile canopy support system approx. 300 m	
	"Dry" tunnelling due to a substantial lowering of the	
	groundwater table	
	Tunnel route runs partly through built-up areas	
	12 m shaft construction:	
	2 tunnel blocks in open cut construction	
	Service building / South emergency exit	
	Bored pile excavation (pile lengths up to approx. 30 m)	
	Bracing at 4 levels and 2 excavation levels	
	(tunnel / service building)	
	179 m top-down method using bored piles	
	Deviations in geology identified subsequently:	
	Impacts: Bored pile design / bracing / foundation of stream	
	crossings / subsoil improvement in the Moosach area /	
	additional time required / crossing of Moosach stream and	
	construction of a diversion channel	
	192 m open cut construction method with south portal	
	structure and trough structure (ramp): Unstable soil (peat),	

consolidation fill requiring a waiting time of over 6 months Underwater excavation partly in peat Underwater concrete base anchored with Gewi piles

Inner diameter: approx. 10.4 m Max. cover: approx. 10 m Excavation cross-section: approx. 100 m²

Construction method: Conventional excavation after substantial lowering of the groundwater table, civil engineering structure constructed by the top-down method using bored piles, open-cut method and trough in bored pile excavations.

Tunnelling using mining techniques in Tertiary hilly terrain north of Munich, top-down method and open cut construction in the transition area mainly in Quaternary soils, foundation lying on Tertiary soil

Utilisation	Infrastructure
Туре	Road tunnel
Length	⊶ 850 m
Construction Method	Tunnel excavator, top down method, open cut method

Mine Water Drainage Tunnel, Ibbenbüren Germany

General Data:

Project:	Mine Water Drainage Tunnel, Ibbenbüren, Germany
Client:	RAG Aktiengesellschaft, Ibbenbüren, Germany
Contractor:	Wayss & Freytag Ingenieurbau AG in Joint Venture
Construction period:	November 2021 to May 2025

Technical Data:

Scope of works:Mine water drainage tunnel, total length: approx. 7,400 m,
2 drives: West 3,230 m and East 3,8700 m in length,
internal diameter: 3.60 m, external diameter 4.50 m, bore
diameter approx. 4.80 m, 230 m open cut tunnel section with
retaining wall comprising bored piles and a 30 m long
launching box for the TBM boring the west section up to a
central shaft.
Central shaft, approx. 75 m deep, internal diameter approx.
32 m. The central shaft will be used as the reception shaft for

the west section TBM and as the launching shaft for the TBM boring the east section up to the existing shaft "Schacht 1 Oeynhausen".

After TBM reception, this 100 m deep shaft will be strengthened.

The drainage tunnel will drain the mine through the segment lining into an invert precast channel, which transports the drained water towards the west, out of the mine into the sewage treatment plant Gravenhorst. The two drives will be bored partly with pea gravel sections, where mine water drainage is required, and partly with 2K-grout sections as segment lining backfill, where mine water drainage is not required. Construction method:Parallel excavation of the tunnels from 2 access points
using 2 Variable-Density-TBMs (VDS), diameter: 4.80 m,
Tunnel lining using reinforced concrete segments,
Construction of west launching box using secant piling and
central shaft using anchors and sprayed concreteGeology:Sand, gravel, sand-/lime-/mudstone, coal seams and adits

Utilisation	💥 Water/Sewerage
Туре	Mine water drainage tunnel
Length	• Approx. 7,400 m
Construction Method	TBM tunnelling using two VD TBMs

Light Rail Line U 81 Germany

General Data:

Project:	Light rail line U 81, lots 1 and 2
Client:	City of Düsseldorf
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	May 2020 to 2023
Net construction costs:	113 million € total project

Technical Data:

Scope of works:Connection of the Düsseldorf main railway station with the
airport, the Düsseldorf trade fair centre and the Airport City
business park, construction of an underground railway station
at the airport terminal.

Lot 1: Construction of several civil engineering structures: ramp structures, elevated trough section, bridge in the area of access gate 1 including the associated foundation work as well as construction of an arch-shaped steel bridge (6-span steel structure, approx. 480 m long, 12 m wide) using the incremental launching method

Track construction and overhead line work, construction of noise barriers

Lot 2: Construction of the excavation pit using anchored diaphragm walls and soldier pile shoring, excavation (partly as underwater excavation) and construction of the ramp structure (118 m long), tunnel structure and station using the cut-and-cover method (length of the underground station approx. 182 m).

construction phases and intermediate states as well as the
corresponding road construction and dewatering works.Construction method:Cut-and-cover methodGeology:Lower Rhine River Terraces/ Gravel – Sand

Utilisation	> Infrastructure
Туре	Provided State Sta
Length	← Lot 1 and Lot 2 approx. 1.7 km
Construction Method	X Cut-and-cover method

Both lots include traffic routing and safety measures during all

Grootveldlaan Storage Sewer, Sint-Pieters-Woluwe Belgium

General Data:

Project:Grootveldlaan Storage Sewer, Sint-Pieters-Woluwe, BelgiumClient:Vivaqua, BrusselsContractor:Wayss & Freytag Ingenieurbau AG in a joint ventureConstruction period:2018 to 2020Net construction costs:€ 14 million

Scope of works:	Construction of a storage sewer tunnel, length: 375 m Internal diameter: 5.20 m External diameter: 5.70 m Min. radius: ∞ m Min. cover: 5.50 m Max. cover: 14.00 m Segmental lining: Number of rings: 310 pieces Ring split: 5 + 1 Segment width: 1.20 m
	Segment thickness: 0.25 m
Construction method:	TBM tunnelling using an EPB shield
Geology:	Clay, clayey sands, Brussels sand

Utilisation	💥 Water/Sewerage	
Туре	Storage sewer tunnel	
Length	⊶ 375 m	
Construction Method	🛞 TBM tunnelling – EPB shield	

Fehmarnbelt Tunnel

Denmark – Germany

General data:

Projekt:	Fehmarnbelt Tunnel
Client:	Femern A/S
Contractor:	Femern Link Contractors (FLC) with partners VINCI
	Construction Grands Projets, Per Aarsleff, Royal BAM Group
	(with its group companies BAM Infra, BAM International and
	Wayss & Freytag Ingenieurbau), Solétanche-Bachy
	International, CFE and Max Bögl Stiftung & Co.
Construction period:	2021 to 2029

Technical data:

Scope of works:The 18 km long Fehmarnbelt Tunnel will connect the Danish
island Lolland with the German island Fehmarn (Schleswig-
Holstein) and will be the world's longest immersed tunnel for
road and rail. It will comprise a four lane motorway and two
electrified rail tracks.

Construction of an 18 km long immersed tunnel, construction of the tunnel factory that will produce prefabricated tunnel elements, construction of the tunnel portals, toll stations, bridges and ramps.

Tunnel elements: 79 individual elements, each 217 metres long, weight 73,000 tonnes, 10 special elements with a lower floor for the use of the tunnel operation and maintenance equipment.

Construction method: Immersed tunnel

UtilisationInfrastructureTypeInfrastructureLengthInfrastructureConstruction
MethodImmersed tunnel

Thames Tideway Tunnel, Tideway West, London

United Kingdom

General Data:

Project:	Thames Tideway Tunnel, Tideway West, London, UK	
Client:	Tideway (Bazalgette Tunnel Limited), London, United Kingdom	
Contractor:	BMB Joint Venture: BAM Nuttall Ltd (in cooperation with Wayss &	
	Freytag Ingenieurbau AG), Morgan Sindall plc, Balfour Beatty	
	Group Ltd	
Construction period:	2015 to 2025	
Net construction costs:	GBP 416 million	

Technical data:

Scope of works: Sewerage tunnel, length: 6,950 m, internal diameter 7.10 m, external diameter 7.80 m, tunnel lining: steel fibre reinforced concrete segments and steel fibre reinforced in-situ concrete secondary lining

> 4 nos. connection tunnels: Frogmore: length 1,100 m, internal diameter 2.6 m, external diameter: 3.21 m, TBM tunnelling

Geologie:

Hammersmith: length 300 m, internal diameter 5 m and 4.1 m, SCL tunnelling Barn Elms: length 215 m, internal diameter 2.2 m, ext. diameter 2.5 m, pipe jacking Putney: length 135 m, internal diameter 2.2 m, external diameter 2.80 m, pipe jacking 7 shafts, diameters up to 25 m, depths up to 40 m

Construction method: TBM tunnelling using an EPB shield, shield diameter 8.13 m and 3.3 m, pipe jacking, SCL tunnelling. Tunnel lining with 8 trapezoid segments per ring, 350 mm thick, 1.70 m wide. Secondary lining: full-round secondary lining shutters, 6x 8.50 m length, PLC controlled, including hydraulic stop-ends, hydraulic spud-bars and automated concrete distribution, Construction of shafts using watertight sprayed concrete lining 28

Silvertown Tunnel, London United Kingdom

General Data:

Geology:

London Clay, dense sands of the Lambeth Group, dense gravels of the Harwich Formation, River Terrace Deposits

Utilisation	Infrastructure
Туре	Road tunnel
Length	⊶ 2,800 m
Construction Method	Tunnelling using an EPB TBM

Project:	Silvertown Tunnel, London, United Kingdom
lient:	Transport for London (TfL), London, United Kingdom
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	2019 to 2025
let construction costs:	GBP 945 million

Technical data:

ALC: NO.

Scope of works:Twin-tube road tunnel under the River Thames, 2 x 1,400 m
long, internal diameter 10.66 m, external diameter 11,46 m
Access ramps, 600 m in length
8 cross-passages
Service buildings at both tunnel portals
1 new footbridge
1 new overbridge for the southbound carriageway of the
Blackwall Tunnel

Construction method:TBM tunnelling using an EPB TBM, 2 x 1,120 m,
TBM diameter 11.8 m, with steel fibre reinforced segmental
lining, Construction of cross-passages using ground freezing
and sprayed concrete lining including rebar reinforced
concrete secondary lining, 300 m cut and cover tunnel

General Data:

Project:	Grand Paris Express, Line 17, Section 1,	
	Bonneuil-en-France, France	
Client:	Société du Grand Paris	
Contractor:	Wayss & Freytag Ingenieurbau AG in joint venture	
Construction period:	January 2019 to August 2023	
Net construction costs:	€ 439 million	

Technical data:

Scope of works:Connection of the municipality of Le Bourget and Le Bourget
Airport to the metro system of Paris, 2 TBM-driven metro tunnels,
length 3.40 km and 2.60 km
Internal diameter: 8.70 m, external diameter: 9.46 m
2 new metro stations: "Le Bourget Aéroport" (underground) and
"Triangle de Gonesse" (above ground)
742 m railway line
7 shafts (6 ventilation-/access shafts and 1 intermediate
launching shaft)

Construction method:TBM tunneling using an EPB shield, shield diameter: 9.87 m, with
segmental tunnel lining
Construction of metro stations "Le Bourget Aéroport"; (diaphragm
walls) and "Triangle de Gonesse" (cut and cover method)
Construction of railway line in using the top-down method
(530 m) and open construction cut and cover method (212 m)
Shaft construction using a VSM (vertical shaft sinking machine)
and diaphram walls

Geology:

Sables de Beauchamps (sand with sandstone inclusions), marl, gravel

Utilisation	Infrastructure
Туре	Aetro tunnel
Length	⊶ 6,000 m
Construction Method	TBM-tunnelling using an EPB shield

Rotterdamsebaan

The Netherlands

General Data:

Project: Client:	Rotterdamsebaan Den Haag, Victory Boogie Woogie Tunnel, double tube road tunnel passing under the City of The Hague City of The Hague, represented by the project organisation	Scope of works:	2 parallel tunnel tubes with a length of 1.645 km each, inner diameter 10.15 m; 6 cross passages driven under the protection of ground freezing;2 access ramps, which at the same time function
Contractor:	Rotterdamsebaan Combinatie Rotterdamsebaan, consisting of BAM Infra and		as start and target shafts, Passing under A4/A13 motorways incl. connection to existing infrastructure
	Wayss & Freytag Ingenieurbau AG. The construction JV consists of BAM Infra, Wayss & Freytag Ingenieurbau and Volker Wessels.	Construction method:	Single segmental lining, driven by slurry shield, shield diameter: 11.32; reinforced concrete segments with a thickness of 40cm
Construction period: Net construction costs:	December 2015 to July 2020 € 301 million incl. 15 years maintenance	Geology:	Quaternary fills of sands and coarse clays, interstratifications of peat and clay, Tertiary sands

Cross River Rail Project, Brisbane Australien

General Data:

Project:	Cross River Rail Project, Brisbane, Australia
Client:	Cross River Rail Delivery Authority (CRRDA)
Contractor:	Wayss & Freytag in a joint venture
Construction period:	2019 to 2023
Net construction costs:	€ 3.4 billion (total project)

Scope of works:	Design & construction of 5.90 km twin-tube railway tunnel, 4 new stations at Boggo Road, Woolloongabba, Albert Street and Roma Street, complete incl. architectural finishes, service facilities, TBM retrieval shafts at the tunnel portals, M&E
Construction method: Geology:	systems, rail & communication systems within the tunnel Tunnelling using 2 hard rock Gripper TBMs and 2 roadheaders Neranleigh-Fernvale Beds, Brisbane Tuff, Aspley Formation (siltstone), Quaternary Alluvium (sand, silty clay)

Utilisation	Infrastructure
Туре	Railway tunnel, twin tubes
Length	⊶ 5.90 km
Construction Method	Tunnelling using 2 hard rock Gripper TBMs and 2 roadheaders

West Link Project, Korsvägen Section, Gothenburg ^{Sweden}

General Data:

Project:	West Link Project, Korsvägen Section, Gothenburg, Sweden
	Double track railway tunnel
Client:	Trafikverket (Schwedish Transportation Authority)
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	2018 to 2026
Net construction costs:	SEK 3.8 billion (approx. € 385 million)

Scope of works:	Double track railway tunnel
	parallel service tunnel, underground station,
	caverns and access tunnel
Construction method:	Drill and blast:
	Length 5.60 km with an excavated volume of approx. 655.000 m³,
	Cross-sections: 80 m ² (access tunnels)
	130 m² (standard cross-section of double-track tunnel)
	up to 600 m² (widened tunnel in the area of
	Korsvägen Station East)
	Open construction:
	Korsvägen Station East excavation: 140 m long, up to 28 m deep,
	open construction
	Liseberg excavation: 260 m long, up to 22 m deep,
	top-down method
	Almedal trough structure and open construction section:
	620 m long
	Civil works including several temporary bridges and a
	highway access ramp
	Building works of temporary and permanent buildings
Geology:	Drill and blast: granite, granodiorite, gneiss
	Open construction/top-down method: topsoil, sand, slit,
	(Lera-)clay, quick clay, moraine

Utilisation	Infrastructure
Туре	Railway tunnel, double-track
Length	⊶ 5.60 km
Construction Method	Drill and blast method, open construction/ top-down method with civil engineering works

Wayss & Freytag Ingenieurbau AG Eschborner Landstraße 130–132 | D-60489 Frankfurt am Main www.wf-ib.de

Tunnelling Division Eschborner Landstraße 130–132 60489 Frankfurt am Main

 Telephone:
 +49 (0) 69 7929-400

 Telefax:
 +49 (0) 69 7929-490

 E-Mail:
 tunnelbau@wf-ib.de

٠

Southern Division Geisenhausenerstraße 15 81379 München

Telephone: +49 (0) 89 78025-0 Telefax: +49 (0) 89 78025-105 E-Mail: ingbau.muenchen@wf-ib.de **Central Division**

Wiesenstraße 21 A II 40549 Düsseldorf

 Telephone: +49 (0) 211 5028-0

 Telefax: +49 (0) 211 5028-215

 E-Mail: ingbau.duesseldorf@wf-ib.de