

Connections for Life

Creative engineering is our main focus. We understand desolutions in response to the tasks set by our clients.
s.

As an internationally renowned construction company, we design environments, establish permanent connections be ween people and places and thus achieve perceptible impro-
vements for both clients and users. In short: We create quality of life for the world of tomorrow.
Customer-oriented thinking and responsible actions form the basis of our business. After all, the success of each and quality of cooperation with our clients.
At Wayss 8 freytag Ingenieurbau AC more than 145 years converge A lean structure ensures the eoptimum realization

Mechanized Tunnelling

In the past Wayss 8 Freytag was sigificantly involved in the
development of mechanized tunnelling tecchiques. For exdevelopment of mechanized tunneling techiniques. For ex-
ample, they initiated the support of the tunnel of a bentonites suspension and air-custion. With the so-called "slurry yhield" this sechniqua was brounht to operational
maturity Wayss $\&$ freytag is a pioneer of this technique and maturity, Wayss $\&$ Freytag is a pioneer of this technique and has in the meantimedriven more than 210 km of tunnel using
slurry shields. In addition, more than 99 km of tunnel were driven using earth pressure balance shields and 44 km using hard rock TBMs. Examples of prominent projects in mechanized tunnelling are Westerschelde Tunnel (Netherlands) as well as Katzenberg Tunnel and Finne Tunnel, the longest railway tunnels built in Germany.

If our clients' projects. In our competence centres create inclose cooperation to find the most appropriate solution for every technological challenge.
Wayss $\&$ Freytag Ingenieurbau $A C$ i s active worldwide in the field of tunnelling. On the international markeet, the compa special know-how and excellent performance
he scope of our activities ranges from mechanized and onventional tunnelling, the construction of sewage treaConstruction and industrial construction to environmental technology. Engineering consulting, location analyses, utization concepts and feasibility studies complete our range fration concences.

Conventional Tunnelling

The construction of tunnels using conventional construction methods has always been a challenge to every engineer
Here, the engineer's most important taski is the evaluation Here, the engineers most important taski isthe evaluation
of the eeology and the selection of the right means of secuting the excavation face until final completion of the inne lining. Wayss 8 freytag already rose to this challenge in 1905 when building a arailway tunnel using the conventional tun-
nelling method in Wasserfurg/IIn in oompholite (Nageffluh) and gravel.
The range of conventional tunnelling reaches from soft rock tunneling (e. 9. a metro tunnel in Munich gravel) and tur
 Drill and blast drives (e. 9 . Rennsteig Tunnel on the $A 7$ motorway, which, with a length of 8 km , is the longes motorway tunnel in Germany).

Total Driven Tunnel Length (km) (Status Oct. 30. 2021)

211,42 km Hydrostield

99,042 km

EPB shied

44,094 km

General Data:
Project:
Client:
Second Main Line of Munich Suburban Railway, Germany
DB NETZE
dB NetzAC
DB Station \& Service
${ }^{\text {DB Energie CmbH }}$
ARCE Tunnel Hauptbahnhof" Joint Venture
ARGE Oberirdisch West" oint Venture
Wayss 8 Freytag Ingenieurbau AC, Ed. Züblin AC,
Max Bö́ Croup, BAUER Speziattieftau CmbH
Construction perio
Construction costs: Overall project costs $£ 865$ million

Technical Data:

Scope of works
contract ve 10:

Western Above-Ground Section

 Extensive dismanting and new construction of track systems and switchesNew con arch bridge
, New construction of noise barrier bridge and further nois New construction of retaining structures and a tunnel for
pedestrians, bicyclists, public-transport buses and the tram) pedestrians, icheclistst public-transsoort buses and the tram) in Laim
Complete renewal of Laim Passenger Station, lectrical work on lowvoltage and medium-voltage systems, underground cable work

Main Station Tunne

onstruction of te simately 40 m deep access structure using he top-down method with diaphragm walls fatform tunnels constructed using the mining method under compressed air in the track area of the main station

New construction of the eamp structure in the western cut-andcover section
diameter of of aporoximatelely 8.50 m from Donnersberger Bride diameter of approximatelt Marienhof Station using
Four city-centre eescue shafts with connecting struct
Extensive special foundation engineering and dewatering measures
Construction
method:
method:
Ceology:
Mining method
Silty sand, silt and
Silty sand, silt and clay
Utilisation $\quad \therefore=$ infrastructure
Type 是 Suburban railway tunnel
Length $\quad \sim 2 \times 3 \mathrm{~km}$
Construction
Method

General Data:
Project: Überruhr Pipeline Tunnel, Essen, Germany
Entwässerung Essen CmbH
Client: Entwässerung Essen CmbH
Contractor: Ways $\&$ Freytag Ingenieurbau $A C$
Cortion to 201
Technical Data:
Scope of works:

Construction of pipeline tunnel; length: 612 m Internal diameter: 1.80 m ; External diameter: 2.30 m	
Min. radius: 430 m	
Min. cover 8.00 m	
Max. cover: 25.00 mJacking pipes:	
Type: DN 1800 reinforced concrete	
Number: 167 pieces	
Length: $3.00 / 4.00 \mathrm{~m}$	
Wall thickness: 0.25 m	
Pipe jacking using a slurry shield	
Mart, clay, sandstone	
Utilisation	\approx Water/Sewerage
pe	(3. Sewerage tunnel
Length	$0 \sim 612 \mathrm{~m}$
Construction	

General Data:
Project:
Client:
Conentractor:
Construction

Net construction costs: $€ 12$ mililion
Technical Data:
Scope of works:
Construction of a storage sewertunnel, length: 654 m
Internal diameter: 3.85
Min. radius: 0.0 m
Min. cover: 3.00 m
Max. cover: 6.80 m
Jacking pipes:
Type: Di 3850 conctates
Type: DN 3850 concrete
Length: 3.00 m
Thickness: 0.35 m
Construction method: Boulder clay, medium sand

General Data:

Project:
Client: Client:
Contractor:

Construction period: Tunnel Cateway Cardens, Lo
Deutsche Bahn AC Tunnel Cateway Car
Deutsche Bahn AC
ARGETunel Cotew ARCE Tunnel Cateway Cardens, Lot 2,
Wayss F Freytag Ingeniewrbau Ac astechnical leader of Wayss j Frevtag ingenieurbau $A C$ a
a $\begin{array}{ll}\text { Netraction period: } & \text { February } 2016 \\ \text { Net construction costs: } \\ € 120 \text { million }\end{array}$

Technical Data:
Scope of works: Construction of light railway station Cateway Gardens
Construction method Geology: Cutuang cover method railway tunnel
Softr \mathbf{t} ock sections, Quartenary sedimentary rocks, cohesive Soft rock sections,
Tertiary layers

Utilisation : in infastructure
Type \quad Railway tunnel, double-track
Length $\quad \sim 2,000 \mathrm{~m}$
Construction
Method cutand cover method

General Data
Project:
Client:
Contractor:
construction period: Net construction costs:

Technical Data:
Scope of works: 30 m north portal structure
30 m north portal structure
462 m tunnel constructed by the mining method:
Top heading and bench/hinvert heading in Tertiary hilly terrain
Spile canopy support system approx. 300 m
"Dr" tunnelling due to a substantial lowering of the
groundwatertable
groundwater table
Tunnel route runs partly through built-up areas
12 m shaft construction:
tennici blocks in open cut construction
Sorved puiliding/ South emergation (pie ency exit
Sored pile excavation (pile engths up to approx. 30 m) Bracing at 4 levels and 2 ex
(tunnel / service building)
179 m top-down method using bored piles
eviations in geology identified subsequently
Impacts: Bred pile design / bracing / foundataion of stream
crossings /subsoil improvement in cossings/ subsoil improvement in the Moosach area/ dditional t time required crossing of Moosach stream and 192 m open cut construction metho
Sructure and trough structure (ramp): Unstabble soi ((peat).

Consolidation fill requiring a waiting time of over 6 months Underwater excavation partly in peat
.
Inner diameter: approx. 10.4 m
Excavation cross-section: approx. $100 \mathrm{~m}^{2}$
onstruction method:
Conventional excavation after substantial lowering of the groundwater table, civil engineering structure constructed by trough in bored pile excavations.
Tunnelling using mining techniques in Tertiary hilly terrain horth of Munich, top-down method and open cut construction in the transtion area mainly in Quaternary sois, foundatio

Utilisation i: infrastructure
Type A Road tunnel
Length
$\sim 850 \mathrm{~m}$
Construction
Methoo
Tunnel excavator, top down metho

General Data:
Project
Client:
Client:
contractor:
Construction
Technical Data:
scope of works:

Mine water drainage tunnel, total length: approx. $7,700 \mathrm{~m}$,
2drives west 3.230 mand
East
.
2drives: West $3,233 \mathrm{~m}$ and Eastan 3,87700 m in in ength,
internal diameter: 3.60 m mexeranal diameter 4.50 m internal diameter: 3.60 m , external diameter 4.50 m , bore
diameterapprox. $4.80 \mathrm{~m}, 230 \mathrm{~m}$ open cut tunnel section with diametera approx. 4.80 m .23 m o open cut tunnel section
retaining wall comprising bored pieses and a 30 m long retaning wali comprisisg bored piles anda 30 mong
launching boxfor the $\mathbf{~ B M M ~ D o r i n g ~ t h e ~ w e s t ~ s e c t i o n ~ u p ~ t o ~}$ ntral shaft.
Central shaft, approx. 75 m deep. internal diameter approx. 22. The central shaft will be used as the reception shaft for bring the east section up to the existing shaft "Schacht 1 Deynhausen
Iter TBM reception, this 100 m deep shaft will be
strengthened
he drainage tunnel will drain the mine through the segment ming into an invert precast channel, which transports the Jained water towards the west, out of the mine into the sewage treatment plant Gravenhorst. The two drives will be bored partly with pea gravel sections, where mine wate segment lining backill, where mine water drainage is no equired.
Mine Water Drainage Tunnel, Ibbenbüren, Germany RAC Aktiengesellschaft, Ibbenbüren, Germany Wayss 8 Freytag Ingenieurbau AC in Joint Venture : November 2021 to May 2025
.

Construction method: Parallel excavation of the tunnels from 2 access points using 2 Variable-Density-TBMs (VDS), diameter: 4.80 m Tunnel lining using reinforced concrete segments, Construction of west launching box using secant piling an
central shaft using anchors and sprayed concrete central staft using anchors and sprayed concrete
Sand, gravel, sand--lime-/mudstone, coal seams and adits

Utilisation

\approx Water/sewerage

Length $\quad \sim$ Approx. $7,400 \mathrm{~m}$
Type Mine water drainage tun

many Germa
 n
 Mine

路
\qquad

路

General Data:
Project:
client:
contractor:
Construction period
Net construction co

Technical Data:

scope of works:

Connection of the Disseldorf main railway station with the
airport, the Dïsseldorf trade fair centre and the Airportcity airport, the Disseldorf trade fair centre and the Airport City
business park, construction of an underground railway station at the airport terminal.
Lot 1: Construction of several civil engineering structures: ramp
structures. elevated trough section bridgei ithe reae ocesest structures, elevated trough section, bridge in the area of access gate 1 including the associated foundation work as well as
construction of a a arch-shaped steel bridge e 6 -span steel structure, approx. 480 m long, 12 m wide) using the incremental launching method
Track construction and overhead line work, construction of noise barriers
Lot 2: Construction of the excavation pitu sing anchored
diaphragm walls and soldier pile shoring excavation (part diaphragm walls and soldier pile shoring, excavation (partly as
underwater excavation) and construction of fheramp structure underwater excavation and construction of the ramp structure
(118 m long), tunnel structure and station using the cut-and-cover (1118 m long), tunnel structure and station using the cut-and-
methoo (length of the underground station approx. 182 m).

Both lots include traffic routing and safety measures during all
construction phases and intermediate states as will as the
Construction method:
Geology: construction phases and intermediate states as well as
Cut-and-cover method
Lower Rhine River Terraces/Gravel - Sand

Utilisation i:o infrastructure
Type 思 Underground tunnel
Length $\quad \sim$ Lot 1 and Lot 2 approx. 1.7 km
Construction
Method
父 cut-and-cover method
 Ways 8 frey
2018 to 2020
$€ 14$ million

Technical Data:
scope of works:

Construction of a storage s.

${ }_{\text {Internal diameter: } 5.20 \mathrm{~m}}^{\text {External diameter: } 5.70 \mathrm{~m}}$
Min. radius: $\boldsymbol{\infty} \mathrm{m}$
$\underset{\text { Max. cover: } 14.00 \mathrm{~m}}{\text { Min. . }}$
Segmental lining:
Number of rings: 310 pieces
Ring split: $5+1$
Segmentwidth.
Segment width: 1.20 m
Segment thickness: 0.25 m
Construction method: Cay, clayeling using an EPB shield
Clay, clayey sands, Brussels sand
Utilisation \approx water/Sewerage
Type
(Btorage sewer tunnel
Length
$\infty 375 \mathrm{~m}$
Construction
Method

General data:

Projekt:
Client:
Fehmarnbelt Tunne
Femern A/s
Femern Link Contractors (FLC) with partners VINCI Construction Crands Projets, Per Aarsleff. Roval BAM Group
(with its group companies BAM Infra, BAM International and Wayss $\&$ Freytag Ingenieurbau), Solétanche-Bachy International, CFE and Max Bög Stiftung \&

Technical data:
scope of works:

The 18 km long Fehmarnbelt Tunnel will connect the Danish island Lolland with the Cerman island Fehmarn (Schleswig-
Holstein) and will be the word's's ongest immersed tunnel for Holstein) and will be the world's longest immersed tunnel for
road and rail. It will comprise f four lane motorway and two electrified rail tracks.
Construction of an 18 km long immersed tunnel, construction of the tunnel factory that will produce prefabicicated tunnel bridges and ramps.
Tunnel elements: 79 individual elements, each 217 metres long, weight 7,000 tonnes, 10 special elements with a lowe
floor for the use of the tunnel operation and maintenance equipment.

Utilisation
Type

- Infrastructure

Construction
Method

Project:
client:
contret
cient:
Contractor:
construction period: Mames Tideway Tunnel, Tideway West, London, UK Tideway (Bazalgette Tunnel Limited). London, United K ingdom
BMB Joint Venture: BAM Nuttall Lta (in cooperation with Wayss $\&$ BMB Joint Venture: BAM Nuttall LLd (in cooperation with Wayss
Freytag Ingenieurbau AC), Morgan Sindall plc, Balfour Beatty Freytag Ingen
Croup Ltd
Construction period: 2015 to 2025
Technical data:
scope of works:
Sewerage tunnel, length: $6,950 \mathrm{~m}$, internal diameter 7.10 m , external diameter 7.80 m , tunnel lining: steel fibre reinforced concrete segment and steel fibre reinforced in-situ concrete secondary linin 4 nos. connection tunnels: 3.21 m , TBM tunnelling

Hammersmith: length 300 m , internal diameter 5 m and 4.1 l sCL tunnelling
SCL tunnelling
Barn Elms: length 215 m , internal diameter 2.2 m , ext. diameter 2. . pipe jacking
Putney: length 135 m , internal diameter 2.2 m , external diameter 2.80 7 shafts, diameters up to 25 m . depths up to 40 m

TBM tunnelling using an EPB shield, shield diameter 8.13 m and 3.3 m . pipe jacking, SCL tunnelling. Tunnel lining with 8 trapezoid segments per ring, 350 mm thick, 1.70 m wide. Secondary lining: full-round secondary lining shutters, $6 \times 8.50 \mathrm{~m}$ length, PLC controlled. including
hydraulic stop-ends, hydraulic spud-bars and automated concrete hyycraulic stop-ends, hydraulic spud-bars and automated conc
distribution, Construction of shafts using watertight sprayed concrete lining

Geologie:
Utilisatio
Sype Sewerage tunnel
Length $\quad \sim 6,950 \mathrm{~m}$ and $1,100 \mathrm{~m}$
Construction TBM tunnelling using an EPB shield
Method

L,
N
0
0

General Data:

Project:
Client:
Contractor:
Construction period:
Net construction cos
Slivertown Tunnel, London, United Kingdom Transport for London (TTLL), London, United Kingdom Wayss \&Freytag Ingenieurbau AC in a joint venture Wayss 8 Frevtag
2019 to 2025

Technical data:
scope of works:
Twin-tube road tunnel under the River Thames, $2 \times 1,400 \mathrm{~m}$ Iong, internal diameter 10.66 m , external diameter 11.4 8 cross-passages
Service buildings at both tunnel portals
1 new footbridge
1 new overridgef for the southbound carriageway of the Blackwall Tunnel

Construction method: TBM tunnelling using an EPB TBM, $2 \times 1,120 \mathrm{~m}$, TBM diameter 11.8 m , with steel fibre reinforced segmental ands. Construction of cross-passages using ground freeziif concrete secondary lining, 300 m cut and cover tunne

Utilisation

Constructio
. Roaad tunne
$0 \sim 0.800 \mathrm{~m}$
Tunnelling using an EPB TBM

General Data:
client:
Contractor:
Construction peri
Construction period:
Net construction costs:
Technical data:
Scope of works:
Connection of the municipality of Le Bourget and Le Bourget Airport to the metro system of Paris. 2 TBM-driven metro tunnels length 3.40 km and 2.60 km 2 new metro stations: "Le Bourget Aéroport" (underground) and "Triangle de Conesse" (above ground) 742 m railway line
launching shaft)
Construction method:
TBM tunneling using an EPB shield, shield diameter: 9.87 m , with segmental tunnel ining
Construction of metro stations "Le Bourget Aéroport"; (diaphragm walls) and "Triangle de Gonesse" (cut and cover method) Construction of railway line in using the top-down method
(530 m) and open construction cut and cover method $(212 \mathrm{~m})$ (530 m) and open construction cut and cover method (212 m)
Shaft construction using a VSM (vertical shaft sinking machine) and diaphram walls

Geology:

Sables de Beauchamps (sand with sandstone inclusions), marl, gravel	
Utilisation	\therefore Infrastructure
Type	Metro tunnel
Length	$0-6.000 \mathrm{~m}$
Construction Method	TBM-tunnelling using an EPB shield

Method TBM-tunnelling using an EPB shield

General Data:
Projec

contractor:
Construction period:
Net construction costs:

Wayss $\&$ Freytag Ingenieurbau AC. The construction JV consists AM Infra, Wayss \& Freytag Ingenieurbau and Volker Wessels. ecember 2015 to uly 2020

Technical data:
scope of works:

Geology:

2 parallel t tunnel tubes with a length of 1.645 km each, inner diameter $10.15 \mathrm{~m} ; 6$ cross passages driven under the protection of
ground freezing; 2 access ramps, which at the same time function ground frezing; 2 access ramps, which at the same time function Connection to existing infrastructure
Single segmental lining, drive by slurry yhield, shield diameter: 11.32; reinforced concrete segments with a thickness of 40 cm peat and clay, Tertiany sands

Technical Data
scope of works:
Design 8 construction of 5.90 km twin-tube railway tunnel,
4 new stations at Bogogoo Raad, Woolloongababa, Albert Street 4 new stations at Boggo Road, Woolloongabba, Albert Street
and Roma Street, complete incl. architectural finishes, service and Roma Street, complete inc. architecturl
faciitites, TBM retrieval shafts at the tunnel portals, M8E

Utilisation i:- infrastructure
Type 胃 Railway tunnel, twin tubes
Length $\quad \sim 5.90 \mathrm{~km}$
Construction
Method $\begin{aligned} & \text { Tunnelling using } 2 \text { hard rock Gripeer TBMs } \\ & \text { and } 2 \text { roadhheaders }\end{aligned}$

General Data:
Project:
client:
Contractor:
Net construction costs: SEK 3.8 billion (approx. $\in 385$ million

Technical Data:
scope of works: Double track railway tunnel parallel service tunnel, underground station, cavers and access tunnel
Length 5.60 km with an excavated volume of approx. 655.000 m Cross-sections: $80 \mathrm{~m}^{2}$ (access tunnels) $130 \mathrm{~m}^{2}$ (standard cross-section of double-track tunnel) up to $600 \mathrm{~m}^{2}$ (widened tunnel in the area of Korsvägen Station East)
Korsügen Station East excavation: 140 m long, up to 28 m deep, open construction
Liseberg excavation: 260 m long, up to 22 m deep.
Liseberg excavation: 260 m long, up to 22 m deep.
top-down method
top-down method Almedal trough structure and open construction section:
620 m long
Civil works including several temporary bridges and a highway access ramp
Building works of temporary and permanent buildings Drill and blast: granite, granodiorite, gneiss
Open construction/top-down method: topsoil, sand, ssit. (Lera-)-clay, quick clay, moraine

Utilisation
i>o infrastructure
Type 界 Railway tunnel, double-track
Length $\quad 0=5.60 \mathrm{~km}$
Construction
Method 父 $\begin{aligned} & \text { Drilland blast method. open construction/ } \\ & \text { top--Iown method } \\ & \text { Mwith civi engineering }\end{aligned}$
ϑ

Wayss \& Freytag Ingenieurbau AG

Eschborner Landstraße 130-132 | D-60489 Frankfurt am Main www.wf-ib.de

Tunnelling Division

Eschborner Landstraße 130-132 60489 Frankfurt am Main

- Télephone: +49 (0)69 7929-400 Telefax: $\quad+49$ (0)69 7929-490 E-Mail: .tunnelbau@wf-ib.de

Southern Division

Geisenhausenerstraße 15 81379 München :

Telephone: +49 (0) 89 78025-0 Telefax: $\quad+49$ (0) 89 78025-105 E-Mait: ingbau.muenchen@wf-ib.de

Central Division
Wiesenstraße 21 A II
40549 Düsseldorf
Telephone: +49 (0) 211 5028-0
Telefax: $\quad+49$ (0) 211 5028-215
E-Mail: ingbau.duesseldorf@wf-ib;de

