Connection for Life

Creative engineering is our main focus. We understand design, conception and execution to be individually developed solutions in response to the tasks set by our clients.

As an internationally renowned construction company, we design environments, establish permanent connections between people and places and thus achieve perceptible improvements for both clients and users. In short: We create quality of life for the world of tomorrow.

Customer-oriented thinking and responsible actions form the basis of our business. After all, the success of each and every construction project is always closely linked to the quality of cooperation with our clients.

Wayss & Freytag Ingenieurbau AG is a member of the Royal BAM Group, one of the biggest European construction companies with its head office in the Netherlands. This powerful foundation enables us to take full advantage of all chances offered by international cooperation. For our clients this results in the greatest possible transparency in all phases of a project as well as availability of comprehensive know-how in conjunction with maximum regional presence.

At Wayss & Freytag Ingenieurbau AG more than 140 years of experience and the technological expertise of today converge. A lean structure ensures the optimum realization of our clients’ projects. In our competence centres created just for this purpose specialist groups of our best staff work in close cooperation to find the most appropriate solution for every technological challenge.

Wayss & Freytag Ingenieurbau AG is active worldwide in the field of tunnelling. On the international market, the company carries out projects in which it distinguishes itself by its special know-how and excellent performance.

The scope of our activities ranges from mechanized and conventional tunnelling, the construction of sewage treatment plants and power plants, railway, bridge and stadium construction and industrial construction to environmental technology. Engineering consulting, location analyses, utilization concepts and feasibility studies complete our range of services.

Mechanized Tunnelling

In the past Wayss & Freytag was significantly involved in the development of mechanized tunnelling techniques. For example, they initiated the support of the tunnel face by means of a bentonite suspension and air-cushion. With the so-called “slurry shield” this technique was brought to operational maturity. Wayss & Freytag is a pioneer of this technique and has in the meantime driven more than 210 km of tunnel using slurry shields. In addition, more than 90 km of tunnel were driven using earth pressure balance shields and 30 km using hard rock TBMs. Examples of prominent projects in mechanized tunnelling are Westerschelde Tunnel (Netherlands) as well as Katzenberg Tunnel and Finne Tunnel, the longest railway tunnels built in Germany.

Conventional Tunnelling

The construction of tunnels using conventional construction methods has always been a challenge to every engineer. Here, the engineer’s most important task is the evaluation of
the geology and the selection of the right means of securing the excavation face until final completion of the inner lining. Wayss & Freytag already rose to this challenge in 1905 when building a railway tunnel using the conventional tunnelling method in Wasserburg/Inn in gompholite (Nagelfluh) and gravel.

The range of conventional tunnelling reaches from soft rock tunnelling (e.g. a metro tunnel in Munich gravel) and tunnelling in compressed air (e.g. Ostbahnhof metro station in Munich in Tertiary formations below groundwater) to classic Drill and blast drives (e.g. Rennsteig Tunnel on the A 71 motorway, which, with a length of 8 km, is the longest motorway tunnel in Germany).
Ireland
Corrib Pipeline Tunnel ... 51

Luxembourg
Stafelter Tunnel .. 52
Grouft Tunnel ... 53

Malaysia
SMART Tunnel ... 54–55

The Netherlands
Rotterdamsebaan ... 56
Sluiskil Canal Crossing .. 57
Ems-Dollard Crossing ... 58
Hubertus Tunnel .. 59
Westerschelde Tunnel ... 60

Austria
Koralm Tunnel KAT 1 ... 61
Hengsberg Tunnel .. 62
Roppen Tunnel .. 63
Lilienberg Tunnel ... 64
Henndorf Bypass .. 65
Vienna Metro - U2/2 Taborstrasse 66
Klaus Tunnel String 2nd Tubes Lots 4+5 67
Gleinalm Tunnel 2nd tube ... 68
Koralm Tunnel Paierdorf Ventilation Structure 69
Gemeinschaftskraftwerk Inn (GKI) (Joint Power Station at the River Inn) 70

Switzerland
Eppenberg Tunnel ... 71
Weinberg Tunnel, Sections 3.1 and 3.2 72
Limmern Access Tunnel I ... 73
Tridel Tunnel .. 74
Uetliberg Tunnel ... 75
Oenzberg Tunnel ... 76
CERN Nuclear Research Centre, Geneva 77

Singapore
Singapore Metro, North-East Line, Contract C704 78–79

Tunneling Technology
Tunnel Rastatt .. 80–81
Eppenberg Tunnel ... 82
Rotterdamsebaan ... 83

Project References ... 84–91
Connections for Life

We offer you the customized solution for your tunnelling projects. From planning through work preparation, execution to operation and maintenance, we develop innovative solutions to suit the specific requirements of your projects.

The experienced teams in our Technical Department are at your disposal to provide optimal planning for your projects from the very beginning. Work preparation, material technology as well as individual monitoring throughout all phases of your project belong to our range of services. They comprise feasibility studies, risk analyses, design and consulting. Furthermore, we offer geotechnical evaluations, expert advice, structural analyses and much more.

The experts in our Construction Material Technology Department develop concrete and mortar with special characteristics for your project to meet your particular requirements. Besides this, our team supports you with concreting and concrete curing concepts as well as with quality assurance concepts.

The W&F Tunneling Technology Department, our centre of expertise for equipment technology, offers customized solutions for equipment concepts for all aspects of mechanized tunnelling according to your requirements. Our services are based on the experience gained on over 300 km of tunnels, driven using tunnel boring machines (TBMs) operated in slurry shield, earth pressure balance (EPB) and hard rock mode.
Our services range from the rental of individual items such as small machines through the development of conceptual designs to the supply and operation of complex large-scale equipment for all geological requirements. On request we can also provide you with our trained and experienced staff to maintain the equipment during operation or with a complete tunnelling team, including the respective management staff.

For your project we can also provide you with separation plants (STP), mud treatment equipment (MTP), slurry circuits for the conveying of excavated material, batching plants, compressed air stations, container systems, booster stations and cooling water systems, tunnel ventilation, safety equipment as well as electrical plants.

With our experienced and reliable teams in **Special Foundation Works** we also offer experienced and sound competence in nearly all parts of Europe. Our range of services in the field of specialized civil engineering comprises diaphragm walls and sealing walls (excavation by crawler cranes and diaphragm wall grippers and cutters as temporary or permanent structures with adjusted joint systems), bored piles (single piles and bored pile walls, completely piped, partly piped and slurry-supported), anchors (temporary and permanent anchors, soil nails and Micro-piles), soil injections in light soils and rock, ground freezing as well as planning and execution of turnkey excavation pits.

We look forward to meeting your challenges!
General Data:

Project: Finne Tunnel, part of new Erfurt-Leipzig-Halle railway line, single-track railway tunnel
Main Contractor: DB Netz AG [German rail company], represented by DB Projekt Bau GmbH, Projektzentrum Leipzig
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint leader
Construction period: December 2006 to September 2012
Net construction costs: €272 million

Technical data:

Scope of work: 2 single-track railway tunnels, length: 2 x 6,822 m, internal diameter: 9.60 m; 2 cut and cover tunnel sections, each approximately 75 m long; 13 cross-passages; 2 tunnels for technical purposes; railway sections in a cutting and on an embankment, lengths: 1,000 m and 340 m; construction of sonic boom structures at all 4 tunnel portals in order to avoid the sonic boom effect, length: 75 m
Construction method: TBM tunnelling using 2 Mixshields (slurry shields), shield diameter: 10.88 m, after 1,500 m conversion of TBMs from slurry shield mode to hard rock mode; segmental lining, thickness of segments: 45 cm; lowering of groundwater table by means of deep wells during tunnelling in open mode (water pressure 6.1 bar)

Geology: Buntsandstein (variegated sandstone), fault zone with Keuper sandstone formations

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 6,822 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling – slurryshield and hardrock TBM</td>
</tr>
</tbody>
</table>
General Data:

Project: Wallring Sewerage Tunnel
Main Contractor: Hamburger Stadtentwässerung AöR
Client: Joint Venture
Wayss & Freytag Ingenieurbau AG (technical leadership) & Arkil
Design: Hamburger Stadtentwässerung AöR
Construction period: 2016 to 2018
Net construction costs: € 12.3 million

Technical data:

Use of Tunnel: Sewerage tunnel; tunnel length: 1,413 m (in 2 sections);
Inner diameter: 1.80 m; outer diameter: 2.30 m; min. radius: 380 m;
Min. cover: 6.50 m; max. cover: 25 m; 7 cross passages (lowered access shafts ; connected by cross passages)

Jacking pipes: Type: DN 1800 reinforced concrete; number: 420 pcs.; length: 3.00 m and 4.00 m
wall thickness: 0.25 m

Geology: Geological characteristics: medium and fine sands, underlying tills,
tillite (boulder clay) and silt with interstratification of sand

Max. hydrostatic pressure: 1.6 bar

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Water / Sewerage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Sewerage water tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>1,413 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe Jacking</td>
</tr>
</tbody>
</table>
General Data:

Project: Emscher Sewerage Tunnel, construction lot (BA)30 (BA 31, BA 32, BA 33) between Dortmund-Mengede and Bottrop Sewage Treatment Plant

Main Contractor: Emschergenossenschaft

Client: Wayss & Freytag Ingenieurbau AG, Central, Tunnelling & Specialized Civil Engineering/Special Foundation Engineering Divisions

Construction period: March 2012 to January 2017

Net construction costs: € 420 million

Technical data:

Scope of work: Construction of 130 excavation pits, 115 shaft structures and approx. 47 km of sewerage tunnel in 117 individual drives with individual lengths of < 20 m to 1,150 m

Construction method: For excavation pits the diaphragm wall and bored pile construction methods. Pipe jacking with DN 1600, DN 1800, DN 2200, DN 2400 and DN 2800 with 9 full-face TBMs using both the EPB and slurry method

Geology:

Emscher marl, sandy and silty clays, tunnel alignment entirely below the groundwater table with a water pressure of up to 3 bar above the pipe invert level.

Utilisation

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Water / Sewerage</th>
</tr>
</thead>
</table>

Type

<table>
<thead>
<tr>
<th>Type</th>
<th>Sewerage water tunnel</th>
</tr>
</thead>
</table>

Length

<table>
<thead>
<tr>
<th>Length</th>
<th>47,000 m</th>
</tr>
</thead>
</table>

Construction Method

<table>
<thead>
<tr>
<th>Construction Method</th>
<th>Pipe jacking, 9 full-face TBMs using both EPB and slurry method</th>
</tr>
</thead>
</table>
Pipeline Tunnel under the Rhine River, Leverkusen
Germany

General Data:

Project: Pipeline Tunnel under the Rhine River, Leverkusen
Main Contractor: CURRENTA GmbH & Co.OHG
Chempark, Leverkusen
Client: Wayss & Freytag Ingenieurbau AG
Design: MOLL-prd, Schmallenberg
Construction period: 2015 to 2017
Net construction costs: € 5.8 million

Technical data:

Use of Tunnel: Accessible pipe culvert
Tunnel length: 471 m
Inner diameter: 2.40 m
Outer diameter: 3.00 m
Min. radius: 8 m (horizontal 8)
Min. cover: 5 m
Max. cover: 13 m

Jacking pipes:
Type: DN 2400 reinforced concrete
Number: 118 pcs.
Length: 4 m
Wall thickness: 0.30 m

Geology:
Geological characteristics: medium to densely bedded sandy, gravelly, stony terraces

Max. hydrostatic pressure: 2 bar

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Utility Tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Gas transportation</td>
</tr>
<tr>
<td>Length</td>
<td>471 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe jacking</td>
</tr>
</tbody>
</table>
General Data:

Project: Stuttgart 21
PFA (section) 1.5, Lot 3 Long-distance route from Stuttgart Main Station to Bad Cannstatt

Main Contractor: DB Netz AG, Frankfurt/Main represented by DB Projektbau Stuttgart – Ulm GmbH

Client: Wayss & Freytag Ingenieurbau AG in a joint venture

Construction period: 2012 – 2021

Net construction costs: approx. € 285 million

Technical data:

Scope of work: 5050 m single-track and 1050 m double-track long-distance railway tunnel; A = 70-220 m², 345 m single-track and 575 m double-track suburban railway tunnel, A = 50-100 m²
790 m rescue tunnel; A = 20-40 m², approx. 60 m deep smoke extraction structure, 1 rescue shaft depth = 20 m

Construction method: Drill and blast method and tunnel excavator, reinforced inner lining partly with foil sealing Bored pile lining, shotcrete shafts, elevation grouting

Geology: Leached and non-leached gypsum Keuper, partly containing anhydrite
General Data:

Project: Tunnel Europagarten, Frankfurt am Main
Main Contractor: aurelis Asset GmbH represented by aurelis Real Estate GmbH & Co.KG, Eschborn
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: January 2015 – August 2016
Gross construction costs: approx. € 29 million

Technical data:

Scope of work: Length 533 m, 395 m covered over section using the cut and cover method
Three tubes: outer tube for motor traffic inner tube for tram
Ramps with clear width 6.50/7.90/6.50 m and clear height of 5.71 m
Two pump buildings including operational building and road works, operational and traffic installations

Construction method: Temporary excavation support system consisting of sheet piles with grouted anchors, underwater concrete base slab. Tunnel tube by cut and cover

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>533 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Cut and cover</td>
</tr>
</tbody>
</table>
General Data:

Project: Darmsheim Northern Bypass, L1182 Darmsheim Tunnel
Main Contractor: Federal Land of Baden – Württemberg represented by RP Stuttgart
Client: Wayss & Freytag Ingenieurbau AG
Construction period: 2015 to 2017
Net construction costs: € 13.5 million

Technical data:

Scope of work: Two-lane road tunnel; length 460 m; \(A = 95 \div 120 \text{m}^2 \)
Escape and safety tunnels, \(l = 228 \text{m}, A = 13.5 \div 18.3 \text{m}^2 \)
Construction method: Drill and blast
Geology: Upper shell limestone

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, two-lane</td>
</tr>
<tr>
<td>Length</td>
<td>460 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast</td>
</tr>
</tbody>
</table>
General Data:

Project: Kö-Bogen Tunnel
Main Contractor: Landeshauptstadt (regional federal land capital of) Düsseldorf, Amt für Verkehrsmanagement (authority for traffic management)
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: 2010 to 2016
Gross construction costs: € 114 million

Technical data:

Scope of work: City centre road tunnel, construction in two lots
Lot 1: approx. 300 m South-North-Tunnel with 85 m ramp and western junction
Lot 2: approx. 675 m North-South-Tunnel with three ramps, approx. 85 m; connection to various subterranean garages, ground levels 7 m to 14 m; 36,000 m³ concrete; 120,000 m³ excavation

Construction method: Excavation supported by diaphragm walls or bored pile walls, underwater concrete with tie-back anchorage system, in some areas top-down method, sewer under existing metro tunnel, monitoring programme to protect surrounding property

Utilisation	Infrastructure
Type	Road tunnel
Length	300 m + 675 m
Construction Method	Cavern with diaphragm walls or bored pile walls
Tunnel Luise-Kiesselbach-Platz
Germany

General Data:

Project: Mittlerer Ring Süd-West (MRSW)(Middle Ring South-West)
Tunnel – Luise-Kiesselbach-Platz
Main Contractor: Landeshauptstadt München Baureferat (Building Authority of
Federal Land Capital of Munich) Abteilungen (Division) J12, ThB, MSE
Client: Wayss & Freytag Ingenieurbau AG as technical leader of
a joint venture
Gross construction costs: € 398 million

Technical data:

Scope of work: The MRSW– Luise-Kiesselbach-Platz Tunnel Project is the third section
of an infrastructure project at the Middle Ring in Munich ratified by a
public referendum in 1996.

The project comprises the construction of an approx. 2.800 m long
inner-city tunnel, in bored pile top-down method and cut and cover
construction method as well as canal and road works.

All works had to be carried out during ongoing traffic on the surface at
all times (approx. 150,000 cars/day) as well as for all utilities in
operation and thus required many traffic diversions and numerous
construction sections.

The heart of the tunnel is considered to be the 2-storey construction of
the intersection between motorway connection A95 and Middle Ring to
the East and North.

Construction method: Bored pile top-down method approx. 2,000 m, cut and cover
construction method approx. 800 m

Geology: Quaternary gravel

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>City Centre road tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>2,800 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Bored pile top-down method, cut and cover construction method</td>
</tr>
</tbody>
</table>
General Data:

Project: NBS (new construction) Stuttgart-Augsburg, Section Wendlingen-Ulm; PFA (section) 2.3 Albhöhe; VE 230-1 Widderstall Tunnel
Main Contractor: DB Project Stuttgart–Ulm GmbH
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: 2013 to 2016
Gross construction costs: approx. € 43.7 million

Technical data:

Scope of work: 962 m long double-track railway tunnel; 440,000 m³ excavated material with tunnel lining (shotcrete and netting); geophysical and direct soil investigation of the karst-prone rock, material processing and backfilling; rain retention and reservoir; construction of a new parking and toilet facility at “Albhöhe”

Construction method: Cut and cover construction method in arch cross-section
Geology: Lower massive limestone

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>962 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Cut and cover construction method in arch cross-section</td>
</tr>
</tbody>
</table>
General Data:

Project: Wehrhahnlinie, Lot 2
Main Contractor: Landeshauptstadt (regional federal land capital of) Düsseldorf, Amt für Verkehrsmanagement (authority for traffic management)
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: 2007 to 2016
Gross construction costs: € 74 million

Technical data:

Scope of work: Total length 120 m, approx. 75 m drive under historical Kaufhof-Building
Connection to station Heinrich-Heine-Allee, tunnel with segmental lining Lot 1

Construction method: Start- and reception cavern with diaphragm walls, navigated horizontal drilling R = 350 m for ground freezing, excavation with tunnel excavator in two segments with shortcrete

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Metro tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>460 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Tunnel excavator</td>
</tr>
</tbody>
</table>
Construction of the new “Sylvensteinspeicher” Seepage Water Tunnel
Germany

General Data:

Project: Sylvenstein Dam BA (construction lot) 3, construction of a new seepage water tunnel, Lots 1-3
Main Contractor: Wasserwirtschaftsam (water authority) Weilheim for the Free State of Bavaria
Client: Wayss & Freytag Ingenieurbau AG
Construction period: March 2013 to July 2014
Gross construction costs: approx. € 5.6 million

Technical data:

Scope of work: Lot 1: Driving of access tunnel l: approx. 90 m and start cavern V = approx. 1,000 m³, construction of 2 pressure partitions(walls), extension of access tunnel incl. tunnel portal, infrastructure provisions
Construction method: Drill and blast, SCL inner lining
Geology: Main Dolomite formation

Scope of work: Lot 2: Driving of target shaft 7 m diameter, d: approx. 40 m and target cavern, L approx. 15 m
Construction method: Drill and blast, SCL inner lining
Geology: mainly dolomite

Scope of work: Lot 3: TBM driven seepage water tunnel, diameter = 3.0 m, L approx. 160 m
Construction method: Pipe jacking with reinforced concrete pipes, L = 2.8 m, installation of two soft gel seals respectively in the transition area between rock and dam fill

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Water / Sewerage as inspection tunnel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Seepage water tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>160 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe jacking</td>
</tr>
</tbody>
</table>
Silberberg Tunnel
Germany

General Data:

Project: German Unity Transport Project VDE8, Upgraded and New Railway Line between Nuremberg and Berlin (Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway line), Silberberg Tunnel

Main Contractor: DB Netz AG [German rail company]

Client: Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture

Construction period: 2009 to 2012

Net construction costs: approx. € 222 million

Technical data:

Scope of work: 7,391 m long double-track railway tunnel, excavated area:
120 m² – 150 m²; 2 intermediate tunnels serving as points of attack; inclined and parallel tunnels, length: 4,395 m, excavated area: 30 m²;
rescue shaft, depth: 21 m

Construction method: Drill and blast method and tunnel excavator, waterproofing and inner lining

Geology: Thuringian slate mountains, clay/silt rock

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>7,391 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
</tbody>
</table>
Gateway Gardens
Germany

General Data:
Project: Tunnel Gateway Gardens, Lot 2
Main Contractor: Deutsche Bahn AG
Client: ARGE Tunnel Gateway Gardens, Los 2, Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: February 2016 – December 2019
Net construction costs: 120 Mio. €

Technical data:
Scope of work: Construction of light railway station Gateway Gardens including 2.2 km light railway tunnel
Construction method: Cut and cover method
Geology: Soft rock sections, Quartenary sedimentary rocks, cohesive Tertiary layers

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>2,200 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Cut and cover method</td>
</tr>
</tbody>
</table>
Cologne North-South Light Railway, Southern Section
Germany

General Data:
Project: Cologne North-South Light Railway, Southern Section, single-track metro tunnel
Main Contractor: Kölner Verkehrs-Betriebe AG, Cologne
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: November 2003 to May 2015
Net construction costs: € 550 million

Technical data:
Scope of work: 3,260 m of light railway line with 2 single-track tunnels, total length: 5,400 m, internal diameter: 7.30 m; 7 stations; 1 crossover; 1 weaving section, tunnelling underneath buildings and traffic facilities with shallow cover ≤ 1 D

Construction method: TBM tunnelling using 2 Mixshields (slurry shields), shield diameter: 8.39 m, segmental lining; use of complex special construction methods, e.g. ground freezing, soil stabilisation (jet grouting and compaction grouting), groundwater lowering, compressed air tunnelling using ground freezing methods and pipe umbrella support systems

Geology: Quaternary sands/gravels

Utilisation	Infrastructure
Type	Metro tunnel, single-track
Length	5,400 m
Construction Method	Mixshield
General Data:

Project: German Unity Transport Project VDE 8, Upgraded and New Railway Lines between Nuremberg and Berlin (Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway line), Brandkopf Tunnel – Lohmeberg Tunnel

Main Contractor: DB Netz AG, Erfurt [German railway company]

Client: Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture

Construction period: August 2009 to March 2012

Net construction costs: € 67.8 million

Technical data:

Scope of work: 2 tunnels, lengths: 1,493 m and 688 m, excavated area: 120 m² – 150 m²

2 reinforced concrete railway bridges, spanning: 150 m and 87 m respectively

Construction method: Drill and blast method and tunnel excavator, water proofing and inner lining

Geology: Lower Rotliegend, volcanic rock, clay, siltstone and sandstone

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 1,493 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
</tbody>
</table>
New Central Services Tunnel for Brunsbüttel Lock
Germany

General Data:

Project: New central services tunnel for Brunsbüttel lock, tunnel for service lines
Main Contractor: Wasser- und Schifffahrtsamt Brunsbüttel [Water and Shipping Authority]
Client: Wayss & Freytag Ingenieurbau AG
Construction period: March 2009 to September 2011
Net construction costs: € 24 million

Technical data:

Scope of work: Construction of a services tunnel (called "Mitteldüker") under the existing double locks at the western end of the Kiel Canal without disrupting lock operations, length: approx. 450 m, clear internal diameter: 2.20 m, tunnel invert approx. 35 m below ground level
Construction method: Pipe jacking using an AVN 2000 machine, construction of shafts using the diaphragm wall method
Geology: Gravelly sand with stones

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Utility tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>450 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe jacking</td>
</tr>
</tbody>
</table>
General Data:

Project: New coal-fired power plant in Wilhelmshaven, cooling water pipelines, Lot C121
Main Contractor: GDF SUEZ Energie Deutschland AG
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: December 2009 – August 2011
Gross construction costs: € 36 million

Technical data:

Scope of work: 4 cooling water pipelines DN 3400 with a length of 300 m each;
1 fish return pipeline DN 1200 with a length of 300 m;
start shaft: 30 m x 25 m x 15 m, diaphragm walls with anchored underwater concrete slab;
target shaft: 45 m x 11 m x 15 m, steel girder shoring with underwater concrete slab and pre-installed lean concrete block;
dyke crossing structure: 5 circular cells of secant bored piles (internal diameter approx. 7 m), a tunnel drive through each circular cell

Construction method: Pipe jacking using 2 slurry-supported tunnel boring machines,
external diameter: 4.1 m
Jacking pipes: Composite pipes DN 3400, consisting of a reinforced concrete pipe with an integrated HDPE pipe liner

Geology: Silty sand with bands of clay

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Water / Sewerage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cooling water tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>4 x 300 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe jacking</td>
</tr>
</tbody>
</table>
Katzenberg Tunnel
Germany

General Data:

Project: Katzenberg Tunnel, part of the new/upgraded Karlsruhe-Basel railway line, single-track railway tunnel
Main Contractor: DB Netz AG [German rail company], represented by DB Projektbau GmbH, Projektzentrum Karlsruhe
Client: Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture
Construction period: August 2003 to March 2011
Net construction costs: € 348 million

Technical data:

Scope of work: Twin-bore railway tunnel, each tube 9.4 km long, of which 8,984 m were driven using a TBM, internal diameter: 9.60 m; 2 cut and cover sections, lengths: 286 m and 115 m; 19 cross-passages (18 cross-passages constructed using mining techniques, 1 cross-passage within the sonic boom structures); 2 ventilation shafts, 67 m deep; water pressure up to 9.2 bar; construction of sonic boom structures at all portals to avoid the sonic boom effect
Construction method: TBM tunnelling using 2 EPB shields, shield diameter 11.12 m, operated both in open and in closed mode, segmental lining, 60 cm thick
Geology: Tertiary claystone, marlstone, limestone and sandstone

Utilisation

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Railway tunnel, single-track</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>2 x 9,400 m</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Construction Method</th>
<th>TBM tunnelling using two EPB shields</th>
</tr>
</thead>
</table>
General Data:

Project: Munich Metro, Line 3 North, Section 2, single-track metro
Main Contractor: Landeshauptstadt München, Baureferat U-Bahn
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: September 2004 to February 2010
Net construction costs: € 81 million

Technical data:

Scope of work: 2 single-track metro tunnels, total length: 2,410 m, internal diameter: 6.30 m; construction of Moosach and Moosacher St.-Martins-Platz Stations
Construction method: TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 7.34 m, segmental lining, construction of metro stations using the top-down method
Geology: Gravel, clay, silt

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>2,410 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling with slurry shield</td>
</tr>
</tbody>
</table>
General Data:

Project: U6 metro link to Fasanenhof, double-track tunnel
Main Contractor: Stuttgarter Straßenbahnen AG
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: 2007 to 2010
Gross construction costs: € 30 million

Technical data:

Scope of work: Double-track mined tunnel, length: 380 m, excavated cross-section: 90 m²; 852 m constructed using the cut and cover method
Construction method: Sprayed concrete lining (SCL) method with tunnel excavator; tunnelling under a high rise building protected by a pipe umbrella support system, under a four-lane federal road and an industrial building with a shallow overburden
Geology: Sandstone of varying strength

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Metro tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 380 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Sprayed concrete lining (SCL) method with tunnel excavator</td>
</tr>
</tbody>
</table>
General Data:

Project: Pipe jacking under Leipzig Main Station
Main Contractor: City Tunnel Leipzig Joint Venture, consisting of Wayss & Freytag Ingenieurbau AG and Strabag AG
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: October 2006 to July 2007
Net construction costs: € 2.8 million

Technical data:

Scope of work: Construction of two pilot tunnels in the course of the construction of Leipzig City Tunnel, Section C, length: 110 m and 145 m, internal diameter: 2.40 m
Construction method: Pipe jacking with a slurry-supported tunnel face; AVN 2000 tunnelling machine, external diameter: 2,400 mm; enlarged to 3,000 mm; wall thickness of jacking pipes: 30 cm, standard length: 3 m; max. settlement 3 mm
Geology: Sand, gravel

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Pilot tunnel for ground freezing</td>
</tr>
<tr>
<td>Length</td>
<td>110 and 145 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe jacking</td>
</tr>
</tbody>
</table>
General Data:

Project: Dortmund Ostentor Light Railway Line III, Contract Section S10.1, 2nd Stage
Main Contractor: Stadt Dortmund, Stadtbahnbauamt [City of Dortmund, Light Rail Construction Authority]
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: March 2002 to December 2005
Gross construction costs: € 40 million

Technical data:

Scope of work:
- Start shaft diameter: 15 m, depth: 22 m
- 600 m single-track cross-section excavated area = 36 m²
- 200 m double-track cross-section excavated area = 70 m²
- 70 m enlargement section excavated area = 36 m² - 60 m²
- 30 m branch-off section, three-bay excavated area = 185 m²
- 100 m station tubes excavated area = 62 m²
- 80 m station section, three-bay excavated area = 138 m²

Construction method: Sprayed concrete lining (SCL) method with tunnel excavator, partly with pipe umbrella support system;
cut and cover method:
western and eastern railhead of the stations with accesses;
100 m closed ramp as a double-track rectangular cross-section;
120 m open ramp as a retained cut

Geology: Marlstone, weathering zone of sandy, gravelly and silty clays

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Metro tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>1,230 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>SCL method with tunnel excavator, cut and cover method</td>
</tr>
</tbody>
</table>
Rennsteig Tunnel
Germany

General Data:

Project: Rennsteig Tunnel, twin-tube, two-lane motorway tunnel on the BAB A 71
Main Contractor: DEGES Deutsche Einheit Fernstraßenplanungs- und -bau GmbH, Berlin
Client: Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture
Gross construction costs: € 192 million

Technical data:

Scope of work: 2 x 7.9 km, standard cross-section: 80 m², emergency lay-bys: 120 m²;
23 cross-passages, 2 central ventilation stations with exhaust shaft;
2 air supply adits;
 tunnelling under a 100-year old railway tunnel with a small clearance between the tunnels

Construction method: Drill and blast method, sprayed concrete lining (SCL) method
Geology: Porphyry, conglomerates

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, two lanes</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 7,900 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast, SCL method</td>
</tr>
</tbody>
</table>
General Data:

Project: Stadtstrah Dortmund, Suburban railway line I, Lot 20 – reconstruction and extension of suburban railway Dortmund Main Station
Main Contractor: Stadt (Municipality) Dortmund (Tiefbauamt – Building authority for civil engineering)
Client: Wayss & Freytag Ingenieurbau AG
Construction period: 2014 to 2017
Net construction costs: € 10.2 million

Technical data:

Scope of work: Conversion and extension of the suburban railway station at main station, enlargement of the platforms across the DB (German Railway) track field, tunnel ceiling cover 2.5 m
Replacement of bored pile walls and outer walls of the existing structure by a beam-column system connected monolithically to the existing structure as well as to the inner lining of the platform extension.

Construction method:

Mining technique (conventional method) protected by a pipe umbrella, length 46 m, manned pipe jacking with forward shield; diameter 1,600 mm, two start shafts
Inner lining of watertight reinforced concrete
Enlargement using conventional methods in two partial cross-sections (roof section and then base) with SCL lining, max. depth of advance 1.0 m, jet underpinning approx. every 7.0 m

Geology:

Coarse clay with peat inclusions, marl, area with high probability of explosive ordnance

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Reconstruction and extension of suburban railway</td>
</tr>
<tr>
<td>Length</td>
<td>2,410 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Mining technique and pipe jacking</td>
</tr>
</tbody>
</table>
Port Said Tunnel
Egypt

General Data:

Project: Port Said Tunnels
Main Contractor: Port Said Road Tunnels under the Suez Canal, Egypt
Republic of Egypt, Ministry of Defence (Ultimate Client)
Arab Contractors – Orascom Construction JV
Client: Wayss & Freytag Ingenieurbau AG
(Service Agreement for Consultancy and Operation of 2 TBM)
Construction period: August 2015 – February 2018
Net construction costs: appr. 20 mio. €

Technical data:

Scope of work: Construction of 2 parallel road tunnels, length 2.85 km each, inner diameter 11.80 m with 2 cross passages and internal road deck, connecting Sinai Peninsula with African mainland
Construction method: Construction of tunnels with 2 nos. Slurry TBM (Herrenknecht Mixshields) shield diameter 13.02 m (max. hydrostatic pressure of 6.5 bar under the Suez Canal)
Geology: Soft clay at both ends of the tunnel
Hard clay / sand in the center part

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, two-lane</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 2,850 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunneling, Hydroshield</td>
</tr>
</tbody>
</table>
General Data:

Project: Liefkenshoek Rail Link, double-track railway tunnel
Main Contractor: Infrabel
Client: Wayss & Freytag Ingenieurbau AG as a member of Locobouw Joint Venture
Construction period: November 2008 to July 2013
Net construction costs: € 693 million

Technical data:

Scope of work: Construction of a double-track railway line, length: 16.2 km; construction of 4.8 km of embankment fills, 4.2 km of tunnel constructed by the cut and cover method and the top-down method using diaphragm walls; 13 cross-passages constructed using ground freezing; 2 x 5,792 m of TBM tunnel; 1 evacuation shaft built using ground freezing; 7 evacuation shafts with sealing block

Construction method: TBM tunnelling using 2 Hydroshields (slurry shields), shield diameter: 8.32 m, internal diameter of tunnel: 7.30 m, segmental lining, 40 cm thick, Refurbishment of 1.2 km Beveren Tunnel

Geology: Quaternary and Tertiary sand / Boom Clay

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, 2 tubes</td>
</tr>
<tr>
<td>Length</td>
<td>16,200 m (TBM: 2 x 5,792 m)</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using 2 Hydroshields (slurry shields)</td>
</tr>
</tbody>
</table>
General Data:

Project: Schuman-Josaphat Tunnel, double-track railway tunnel
Main Contractor: Departement Mobiliteit en Vervoer [Belgian Department of Transport]
Client: Wayss & Freytag Ingenieurbau AG as a member of Locobouw Joint Venture
Construction period: October 2008 to June 2015
Net construction costs: € 255 million

Technical data:

Scope of work: Structural modification of Schuman train and metro station; construction of double-track Schuman-Josaphat Tunnel, box section; length: 1,400 m, width: approx. 10.85 m, height: 6.86 m; pipe jacking to build a pipe umbrella support system, lengths of pipe jacking: 760 m with an internal diameter of 3.00 m, 1,200 m with an internal diameter of 2.10 m
Construction method: Mining techniques for most of the tunnel, partly under the protection of manually constructed underpinnings, partly by a pipe umbrella support system constructed using the pipe jacking method; pipe jacking using an AVN 1800 machine
Geology: Sand with beds of sandstone

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>1,400 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Mining techniques</td>
</tr>
</tbody>
</table>
General Data:

Project: Voorbereidende werken Oosterweelverbinding – Schijnpoort
Main Contractor: Beheersmaatschappij Antwerpen Mobiel (BAM NV)
Client: W&F Ingenieurbau, Antwerp
Construction period: April to July 2017
Net construction costs: € 5.8 million

Technical data:

Scope of work: Pipes DN 3500, wall thickness 30 cm, outer diameter 4.10 m, “plaatstale kern” design, individual length 3.00 m, individual weight 27 tons
Pipe jacking machine AVND 3500 Herrenknecht
2 x 233 m drive below Antwerp motorway ring road as well as below 2 operating tunnel tubes of Pre-Metro

Construction method: Drive with slurry supported tunnel face, depth approx. 30 m, supporting pressure 3 bar

Geology: Fine sand containing glauconite

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Water / Sewerage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Sewerage water tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 233 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Pipe jacking</td>
</tr>
</tbody>
</table>
General Data:

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project:</td>
<td>Diabolo Project, single-track railway tunnel</td>
</tr>
<tr>
<td>Main Contractor:</td>
<td>Northern Diabolo nv (PPP company for the railway tunnel)</td>
</tr>
<tr>
<td></td>
<td>Via-Zaventem nv (PPP company for the road construction part)</td>
</tr>
<tr>
<td>Client:</td>
<td>Wayss & Freytag Ingenieurbau AG in a joint venture</td>
</tr>
<tr>
<td>Construction period:</td>
<td>October 2007 to February 2012</td>
</tr>
<tr>
<td>Net construction costs:</td>
<td>€ 333 million</td>
</tr>
</tbody>
</table>
Technical data:

Scope of work: Conversion of the dead-end station at Zaventem Airport, Brussels, into a through station; connection of the station to the new high-speed railway line from Brussels to Antwerp by means of approx. 5,600 m of tunnel:
- 2 TBM-driven tunnels, length: approx. 1.1 km each, internal diameter 7.30 m,
- approx. 1.1 km of tunnel built using the top-down method,
- 1 emergency exit and 2 cross-passages using ground freezing techniques;
- construction of additional accesses and exits for the E19 motorway;
- refurbishment of an existing motorway bridge and addition of a new bridge for cyclists; construction of a fly-over

Construction method: TBM tunnelling using a Mixshield (slurry shield), shield diameter: 8.27 m, segmental lining, 35 cm thick; top-down method; cut and cover method

Geology: Sand with beds of sandstone in the rock area

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 5,600 m (TBM: 1,100 m)</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a Mixshield (slurry shield)</td>
</tr>
</tbody>
</table>
Antwerp North-South Link (ASDAM)
Belgium

General Data:

Project: Antwerp North-South Link (ASDAM), single-track railway tunnel

Main Contractor: NMBS CCE Strategie Ontwikkeling (Belgian Railway) represented by TUC RAIL NV, Brussels, Belgium

Client: Wayss & Freytag Ingenieurbau AG in a joint venture

Construction period: May 2001 to March 2005

Net construction costs: € 81 million

Technical data:

Scope of work: Construction of two tunnels, length: 2,456 m (2 x 1,228 m), internal diameter: 7.30 m; structural modification of the existing accesses; construction of a passageway under the main railway station; 3 emergency exits and 2 cross-passages using groundwater control techniques;

Construction method: TBM tunnelling using a Mixshield (slurry shield), shield diameter: 8.27 m; segmental lining, 35 cm thick;

Geology: Sand

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>2,456 m (2 x 1,228 m)</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a Mixshield (slurry shield)</td>
</tr>
</tbody>
</table>
Glendoe Recovery Project
United Kingdom

General Data:

Project: Glendoe Recovery Project – construction of a bypass tunnel around a collapse area, an access tunnel to the headrace tunnel, repair works in the headrace and tailrace tunnel

Main Contractor: Scottish Southern Energy (SSE)

Client: Wayss & Freytag Ingenieurbau AG in a joint venture

Construction period: January 2010 to March 2012

Net construction costs: € 134 million

Technical data:

Scope of work: Bypass tunnel, 605 m, excavated cross-section: 28 m², as a D-shaped profile with a gradient of 12%, access via existing headrace tunnel (length: 2 km, 19 m² circular cross-section, 12% gradient); access tunnel, 550 m, excavated cross-section 28 m², as a D-shaped profile; exploration borings from above ground to detect cavities in the rock; shotcrete inner linings in the bypass tunnel and in places in the headrace tunnel; partial removal of the flushed out collapse material from the headrace tunnel; closing of the collapse area and the access tunnel by means of a concrete seal

Construction method: Mining techniques: drill and blast method in combination with tunnel excavator and sprayed concrete lining (SCL), classification of tunnelling operations according to the Q-System, advance per round: 1.5 m – 4 m

Geology: Quarzite with slate inclusions; uniaxial strength approx. 80 MPa – 120 MPa; Eilrig Shear Zone with highly destabilized zones (the collapse of the TBM tunnel took place in this zone).

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Bypass tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>605 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
</tbody>
</table>
Crossrail Western Tunnels including Bond Street and Tottenham Court Road and Farringdon Stations, London
United Kingdom

General Data:
- **Project:** Crossrail Western Tunnels including Bond Street and Tottenham Court Road and Farringdon Stations, London, UK
- **Main Contractor:** Crossrail Limited, London, UK
- **Client:** Wayss & Freytag Ingenieurbau AG in a joint venture
- **Construction period:** February 2011 to August 2018
- **Net construction costs:** €1,520 million

Technical data:
- **Scope of work:**
 - **Contract C300:** Construction of 2 parallel, single-track railway tunnels, length: 6.5 km each, internal diameter: 6.20 m;
 - 6 cross-passages; construction of Fisher Street Shaft and Crossover
 - **Contract C410:** Construction of Bond Street and Tottenham Court Stations
 - **Contract C435:** Construction of Farringdon Station
- **Construction method:** Construction of the tunnels using 2 EPB shields, shield diameter: 7.10 m; segmental lining, 30 cm thick; construction of the stations using the sprayed concrete lining (SCL) method; construction of Fisher Street Shaft and Crossover using NATM techniques with a sprayed concrete inner lining
- **Geology:** Mainly London Clay

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 6,500 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using EPB shields</td>
</tr>
</tbody>
</table>

Infrastructure

Type

Railway tunnel, single-track

Length

2 x 6,500 m

Construction Method

TBM tunnelling using EPB shields

Infrastructure

Type

Railway tunnel, single-track

Length

2 x 6,500 m

Construction Method

TBM tunnelling using EPB shields
General Data:

Project: Channel Tunnel Rail Link, Contract C250, single-track railway tunnel
Main Contractor: Union Railways (North) Ltd., London, UK
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: February 2001 to September 2004
Net construction costs: € 217 million

Technical data:

Scope of work:
- 2 parallel railway tunnels, length: 5.3 km each, internal diameter: 7.15 m;
- 7 cross-passages;
- 1 ventilation shaft

Construction method:
- TBM tunnelling using 2 EPB shields, shield diameter: 8.15 m;
- steel fibre reinforced segmental lining;
- both tunnels driven simultaneously from a retained cut structure

Geology:
- Sand, London Clay, silt, gravel

Utilisation

<table>
<thead>
<tr>
<th>Type</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2 x 5,300 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using EPB shields</td>
</tr>
</tbody>
</table>
General Data:

Project: Corrib Pipeline Tunnel, utility tunnel for a gas pipeline
Main Contractor: Shell E&P Ireland Limited, Dublin, Ireland
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: November 2010 to February 2015
Net construction costs: € 126 million

Technical data:

Scope of work: Tunnel for a gas pipeline, length: 4,900 m, internal diameter: 3.50 m; installation of the gas pipeline (diameter 50 cm), 2 water pipelines (diameter 25 cm) and several control cables into the tunnel; complete grout backfilling of the tunnel after installation of the pipelines and cables
Construction method: TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 4.24 m; steel fibre reinforced segmental lining, wall thickness 25 cm
Geology: Quaternary sands, gravels, gneiss

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Media / Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Pipeline tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>4,900 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a Hydroshield (slurry method)</td>
</tr>
</tbody>
</table>
General Data:

Project: Stafelter Berg Tunnel
twin-tube, two-lane motorway tunnel
Main Contractor: Grand-Duché de Luxembourg – Ministère des Travaux Publics
[Grand Duchy of Luxembourg – Ministry of Public Works]
represented by Administration des Ponts et Chaussées, Luxembourg
[Bridge and Road Department]
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: September 2008 to August 2012
Gross construction costs: € 100 million

Technical data:

Scope of work: 2 double-lane motorway tunnels, each with a length of 1,850 m
(excavated area: 74 m² – 114 m²), of which 1,650 m were constructed using mining techniques and 200 m using the cut and cover method
Construction method: Drill and blast method in combination with tunnel excavator, construction of a pipe umbrella support system in some areas with shallow soil cover
Geology: Luxembourg Sandstone

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, two-lane</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 1,850 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
</tbody>
</table>
General Data:

Project: Grouft Tunnel, Luxembourg; twin-tube, two-lane motorway tunnel
Main Contractor: Grand-Duché de Luxembourg – Ministère des Travaux Publics [Grand Duchy of Luxembourg – Ministry of Public Works] represented by Administration des Ponts et Chaussées, Luxembourg [Bridge and Road Department]
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: February 2005 to August 2009
Gross construction costs: € 171 million

Technical data:

Scope of work:
- 1 double-lane tunnel, 3 km, excavated cross-section: 96 m²;
- 1 triple-lane tunnel, 2.9 km, excavated cross-section: 174 m²;
- 1 cavern with ventilation shaft;
- 10 cross-passages, of which 4 are accessible by vehicles;
- 1 rescue tunnel, length: 40 m

Construction method: Drill and blast method in combination with tunnel excavator, sprayed concrete lining (SCL) method
Geology: Marl, sandstone, Keuper

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, double lane</td>
</tr>
<tr>
<td>Length</td>
<td>3,000 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
</tbody>
</table>
SMART Tunnel
Malaysia

General Data:

- **Project:** Stormwater Management and Road Tunnel (SMART) Project, flood relief and road tunnel in the city centre of Kuala Lumpur
- **Main Contractor:** MMC Eng. Group Bhd./Gamuda Eng. Sdn. Joint Venture, Kuala Lumpur, Malaysia
- **Client:** Wayss & Freytag Ingenieurbau AG
- **Construction period:** January 2003 to January 2006
- **Net construction costs:** € 83 million

Technical data:

- **Scope of work:** Combined flood relief and road tunnel, length: 5,230 m, internal diameter: 11.83 m
- **Construction method:** TBM tunnelling using a Mixshield (slurry shield), shield diameter: 13.21 m, segmental lining
- **Geology:** Sand, gravel, limestone

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>Flood relief and road tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>5,230 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a Mixshield (slurry method)</td>
</tr>
</tbody>
</table>
Rotterdamsebaan
The Netherlands

General Data:

Project: Rotterdamsebaan Den Haag, Victory Boogie Woogie Tunnel, double tube road tunnel passing under the City of The Hague

Main Contractor: City of The Hague, represented by the project organisation Rotterdamsebaan

Client: Combinatie Rotterdamsebaan, consisting of BAM Infra and Wayss & Freytag Ingenieurbau AG. The construction JV consists of BAM Infra, Wayss & Freytag Ingenieurbau and Volker Wessels.

Construction period: December 2015 to July 2020

Net construction costs: € 301 million incl. 15 years maintenance

Technical data:

Scope of work: 2 parallel tunnel tubes with a length of 1,645 m each, inner diameter 10.15 m; 6 cross passages driven under the protection of ground freezing; 2 access ramps, which at the same time function as start and target shafts, Passing under A4/A13 motorways incl. connection to existing infrastructure

Construction method: Single segmental lining, driven by slurry shield, shield diameter: 11.32; reinforced concrete segments with a thickness of 40cm

Geology: Quaternary fills of sands and coarse clays, interstratifications of peat and clay, Tertiary sands
General Data:

Project: Sluiskil Canal Crossing, twin-bore road tunnel under the Ghent-Terneuzen Canal
Main Contractor: Province of Zeeland [Provincie Zeeland], represented by BV Kanaal-kruising Sluiskil
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: October 2010 to May 2015
Gross construction costs: € 234 million incl. 2 years maintenance

Technical data:

Scope of work: 2 parallel tunnel tubes, length: 1.15 km each, internal diameter: 10.10 m;
4 cross-passages built using ground freezing;
2 ramp structures serving as start and/or target shafts;
2 intersections - East and West - consisting of bridge structures with 2 roundabouts each

Construction method: TBM tunnelling using a Hydroshield, Mixshield (slurry shields),
shield diameter: 11.32 m and 11.37 m,
reinforced concrete segmental lining, wall thickness: 45 cm

Geology:
Sand, silt, Boom Clay, sand containing glauconite

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 1,150 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling with Hydroshield and Mixshield</td>
</tr>
</tbody>
</table>
General Data:

Project: Ems-Dollard Crossing between Germany and the Netherlands, tunnel for a gas pipeline

Main Contractor: Nederlandse Gasunie

Client: Wayss & Freytag Ingenieurbau AG in a joint venture

Construction period: June 2008 to September 2010

Net construction costs: € 45.7 million

Technical data:

Scope of work: Tunnel for a gas pipeline, length: approx. 4,050 m, internal diameter: 3.0 m; start and target shaft; installation of the gas pipeline in the tunnel using the floating method and subsequent backfill grouting of the tunnel; extensive soil investigation

Construction method: TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 3.78 m; steel fibre reinforced segmental lining, wall thickness 25 cm

Geology: Potklei (local type of clay), sands, clays

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Cable tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>4,050 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a Hydroshield (slurry method)</td>
</tr>
</tbody>
</table>
General Data:

Project: Hubertus Tunnel, road tunnel
Main Contractor: emeente Den Haag [Municipality of The Hague], the Netherlands
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: September 2004 to September 2008
Net construction costs: € 109 million

Technical data:

Scope of work: 2 double-lane tunnels, each 1,490 m long, internal diameter: 9.40 m; 2 ramp structures; 5 cross-passages built using ground freezing;
Construction method: TBM tunnelling using a Mixshield (slurry shield), external diameter of TBM: 10.50 m; reinforced concrete segmental lining, 40 cm thick
Geology: Silty fine sands to medium dense beach sands

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, double-lane</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 1,490 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a Mixshield</td>
</tr>
</tbody>
</table>
General Data:

Project: Westerschelde Tunnel, road tunnel
Main Contractor: Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: January 1997 to March 2003
Net construction costs: € 690 million

Technical data:

Scope of work: 2 parallel tunnel tubes,
Length: 2 x 6,600 m,
Internal diameter: 10.10 m
26 cross passages built using ground freezing;
Ramp structures, toll stations and road connections including various civil engineering structures
Construction method: TBM tunnelling using 2 Mixshields (slurry shields), shield diameter: 11.34 m,
segmental lining, 45 cm thick
Geology: Sand, Boom Clay

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 6,600 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using 2 Mixshields (slurry method)</td>
</tr>
</tbody>
</table>
General Data:

Project: Koralm Railway Line between Graz and Klagenfurt
Koralm Tunnel, Contract Section
KAT 1 – km 37+700 – km 43-150 – B 1961

Main Contractor: ÖBB Infrastructure Bau AG, Graz [National railway of Austria]

Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture

Construction period: 2009 to 2013
Net construction costs: 90 million

Technical data:

Scope of work: Two single-track railway tunnels, each 1,961 m long, excavated area: 65 m² – 80 m²; 5 cross-passages; 280 m of double-track tunnel tubes with a partition wall constructed by the cut and cover method; approx. 3 km-long open-cut railway line including earthworks and civil engineering works (flyovers, wildlife bridges, noise barriers); technical building including an emergency basin and retaining walls at the tunnel portal

Construction method: Drill and blast method and tunnel excavator

Geology: Neogene (Miocene to Quaternary), sediments (loose rock – silt – sand) overlying poorly consolidated rock (siltstone and sandstone)

Utilisation	Infrastructure
Type	Railway tunnel, single-track
Length	2 x 2,280 m
Construction Method	Drill and blast method in combination with tunnel excavator
General Data:

Project: Koralmbahn (railway) Graz–Klagenfurt B 1581
Lot 3 – Hengsberg Tunnel
Main Contractor: ÖBB-Infrastructur Bau AG
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: 2007 to 2010
Net construction costs: € 76.8 million

Technical data:

Scope of work: Double-track railway tunnel, L=1,695 m, closed construction method
L = 1035 m, A = 110-125 m², cut and cover method, L = 400m; top-down method L = 210 m; 3 emergency exits
Open land section, L = 5,898 m, earthworks, drainage works, noise protection, accompanying paths, retention areas
Objects: 1 underpass structure, 1 stormwater bridge

Construction method: Closed construction method: combination of tunnel excavator and Drill and blast, cut and cover and top-down method with separate bored pile sheeting

Geology: Quaternary: Sand, gravel; Neogene: sandstone, silt- / clay-/ marl- stone, silt

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>2,730 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
</tbody>
</table>
General Data:

- **Project:** Roppen Tunnel, Second Tube, two-lane motorway tunnel and adaptation of first tube
- **Main Contractor:** ASFINAG Baumanagement GmbH, Vienna
- **Client:** Wayss & Freytag Ingenieurbau AG in a joint venture
- **Construction period:** 2006 to 2010
- **Net construction costs:** €80 million

Technical data:

- **Scope of work:** Length: 5.1 km, excavated cross-section: 80 m² – 95 m²; 7 emergency lay-bys, 23 cross-passages
- **Construction method:** Sprayed concrete lining (SCL) method with drill and blast excavation
- **Geology:** Dolomite (dolomia principale)

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, double-lane</td>
</tr>
<tr>
<td>Length</td>
<td>5.10 km</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Sprayed concrete lining (SCL) method with drill and blast excavation</td>
</tr>
</tbody>
</table>
General Data:

Project: Völkermarkt Bypass, two-lane road tunnel
Main Contractor: Land Kärnten, Abteilung 17 – Brücken und Tunnels
[State of Carinthia, Division 17 – Bridges and Tunnels]
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: 2007 to 2009
Net construction costs: € 23 million

Technical data:

Scope of work: Two-lane road tunnel, main tunnel, L = 1,300 m,
A = 85 m², 1 breakdown bay, 2 escape tunnels, L = 600 m, A = 25 m²
Construction method: combination of tunnel excavator and drill and blast
Geology: Phyllite

Utilisation

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Road tunnel, double-lane</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>1,300 m + 600 m</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Construction Method</th>
<th>Drill and blast method in combination with tunnel excavator</th>
</tr>
</thead>
</table>
General Data:
Project: B 1 Federal Road Wiener Straße, Henndorf Bypass, two-lane road tunnel
Main Contractor: Land Salzburg, Landesbaudirektion
[State of Salzburg, State Building Authority]
Client: Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period: 2006 to 2009
Net construction costs: € 38 million

Technical data:
Scope of work: Length: 2.2 km, excavated cross-section: 80 m² – 100 m²; 2 parking bays, area: 125 m²; 6 cross-passages to an existing exploration tunnel; ventilation shaft, diameter: 4m, depth: 38 m; service buildings and emergency exit shafts
Construction method: Drill and blast method in combination with tunnel excavator, length: 1.4 km; length: 1.4 km; cut and cover method: 732 m
Geology: Ground moraine and Flysch sedimentary rock

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, double-lane</td>
</tr>
<tr>
<td>Length</td>
<td>2,200 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
</tbody>
</table>
Vienna Metro - U2/2 Taborstrasse
Austria

General Data:
Project: Metro line 2, Section 2, Taborstrasse
Main Contractor: Wiener Linien GmbH & Co KG
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: 2002 to 2007
Gross construction costs: € 110 million

Technical data:
Scope of work: Length: 2 x 1.1 km, excavated cross-section: 39 m² – 44 m²; 2 station tubes, excavated cross-section: 65 m²; access and supply shafts
Construction method: Tunnel excavator: advance under the protection of jet-grouted canopies and jet-grouted bulkheads
Dewatering: 270 wells up to a depth of 40 m, electronic monitoring and control system, maximum output 285 l/s, total output 25 million cubic metres of groundwater
Geology: Tertiary silts and sands, groundwater

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Metro Tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 1,100 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Tunnel excavator</td>
</tr>
</tbody>
</table>
General Data:

Project: A9 Pyhrn Motorway full extension of 2nd tube
Lot 5 “Spering” and “Falkenstein” Tunnels,
Lot 4 “Klauser” and “Traunfried” Tunnels

Main Contractor: ASFINAG Baumanagement GmbH
Client: Wayss & Freytag Ingenieurbau AG
as commercial leader of a Joint venture

Construction period: 2014 to 2017
Net construction costs: €34.99 million + 31.29 million

Technical data:

Scope of work: Double-lane motorway tunnel Lot 5 “Spering” Tunnel, L = 2,894 m,
enlargement to full cross-section, bench/invert, A = 30 – 60 m²,
10 cross-passages, 2 breakdown bays, Falkenstein Tunnel, L = 752 m,
A = 70 – 80 m² 2 cross-passages
Lot 4 Klauser Tunnel, 2,166 m of which 1,900m to be enlarged to full
cross-section, bench/invert
A = 30 – 60 m², L = 160 m complete, excavation A = 75 – 85 m²;
8 cross-passages, 2 breakdown bays, Traunfried Tunnel, L = 462m,
A = 75 – 85 m²;
2 service buildings and water tank for firefighting purposes

Construction method: Drill and blast method and tunnel excavator

Geology: Firm to slightly weathered main dolomite, tectonically strongly
stressed limestone with all grades of weathering, slightly weathered
to bedded Wetterstein dolomite, loose soil layers (unconsolidated
colluvium)

Utilisation

<table>
<thead>
<tr>
<th>Infrastructure</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Motorway tunnel, two-lane</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th>6,274 m</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Construction Method</th>
<th>Drill and blast method in combination with tunnel excavator</th>
</tr>
</thead>
</table>
General Data:

Project: Pyhrn motorway, full extension, 2nd tube "Gleinalm" Tunnel
Main Contractor: ASFINAG Baumanagement GmbH
Client: Wayss & Freytag Ingenieurbau AG of a joint venture
Construction period: 2013 to 2017
Net construction costs: € 99.4 million

Technical data:

Scope of work: Double-lane motorway tunnel, L = 8,047 m, A = 80 – 90 m²,
34 cross-passages, L = 840 m, A = 15 – 45 m², 8 breakdown
and 7 ventilation bays, A = 110+ 120 m², 2 portal galleries
and ventilation towers
Construction method: Drill and blast
Geology: Gneiss, amphibolite as well as slate in massive,
plate-like to slate-like form
General Data:

Project: Koralmbahn (railway) Graz–Klagenfurt, Koralmbahn Tunnel, Lot Paierdorf Ventilation Structure – B11968
Main Contractor: ÖBB-Infrastructure Bau AG
Client: Wayss & Freytag Ingenieurbau AG
Construction period: 2012 to 2013
Net construction costs: €7.4 million

Technical data:

Scope of work: Construction of a ventilation building consisting of North tube access cavern, L = 18 m, A = 120 m² and enlargement area L = 90 m, A = 114 m², ventilation tunnel North, L = 93 m, gradient 14°, A = 36 m². Enlargement of south tube from existing tube to complete cross-section, L = 250 m. Ventilation shaft interior construction H = 117 m, Maintenance of exploration structure during the construction period.

Construction method: Drill and blast method and tunnel excavator, SCL inner lining, slip-form construction

Geology: Neogene (Miocene) consisting of coarse clay (clayey, sandy), sand (silty)

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>533 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
</tbody>
</table>
General Data:

Project: Gemeinschaftskraftwerk Inn (GKI), Prutz/Ried
Main Contractor: Tiroler Wasserkraft (Tirolean Hydropower)/EKW-OEE/Verbund
Client: Wayss & Freytag Ingenieurbau AG, in a joint venture
Construction period: 2014 to 2018
Net construction costs: € 56 million

Technical data:

Scope of work:
- Penstock, inclined shaft, approx. 400 m; gradient less than 31 %, Surge chamber plumb shaft
- Excavation and securing works, D=100 m, Ø 15 m
- Concrete works vertical shaft, inner Ø 14 m
- Return Drive (in opposite direction) approx. 1,000 m
- Concrete works return drive, inner lining, bottom and roof, access tunnel, caverns

Construction method: Drill and blast method and tunnel excavator

Geology: Dark limestone phyllite

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Water / Sewerage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Supply tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>400 m + approx. 1,000 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
</tbody>
</table>
General Data:

- **Project:** Eppenberg Tunnel Project, Part 1 “Tunnel in mining technique”
- **Main Contractor:** SBB Infrastructure
- **Client:** Wayss & Freytag Ingenieurbau AG in a joint venture
- **Construction period:** July 2015 to July 2019
- **Net construction costs:** € 90 million

Technical data:

- **Scope of work:** 1 double-track railway tunnel, total length 2,613 m, of which a first part of approx. 80 m is driven in mining technique, 1,820 m in hard rock with TBM and 713 m in soft rock with TBM
- **Inner diameter tunnel:** 11.19 m, drilling diameter 12.79 m
- **3 rescue and escape tunnels with the respective shafts**
- **As well as 5 bays for technical purposes in the tunnel**

- **Construction method:** TBM-tunnel driven with convertible TBM in hard rock as well as in soft rock (slurry mode), shield diameter 12.75 m – double lining with tunnel segments as outer lining and in-situ concrete lining with external sealing as inner lining each with a thickness of 30 cm.
- **The rescue tunnels are constructed in mining technique.**

- **Geology:** Effingen beds (claystone partly cemented), lower freshwater Molassegravel in soft rock sections

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>2,613 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunneling with Hard Rock TBM and Hydroshield</td>
</tr>
</tbody>
</table>
General Data:

Project: Weinberg Tunnel, Sections 3.1 and 3.2, Zurich, as part of the Zurich Main Station-Altstetten-Oerlikon Diameter Line

Main Contractor: Schweizerische Bundesbahnen SBB [Swiss Federal Railways] represented by Infrastructure – Projekt Management Durchmesserlinie

Client: Wayss & Freytag Ingenieurbau AG in a joint venture

Construction period: September 2007 to May 2014

Net construction costs: € 246 million

Technical data:

Scope of work:

Lot 3.1: Tunnelling under the southern part of Zurich Main Station and construction of a shaft in front of the southern part, 220 running metres of longitudinal tunnels (excavated area: approx. 36 m²) and 390 running metres of transverse tunnels (excavated area: 14 m² - 17 m²) as auxiliary tunnels for construction work using the top-down method under the southern part

Lot 3.2: Double-track railway tunnel (main tunnel) and parallel escape and rescue tunnel, total length of main tunnel: 4,537 m, of which 4,382 m are shield-driven, internal diameter: 9.74 m, length of escape and rescue tunnel: 4,460 m, internal diameter: 4.35 m; 8 cross-passages; 2 emergency exits; 105 m of conventional tunnelling between the TBM launching chamber and the cut and cover tunnel in Oerlikon; Brunnenhof start shaft (diameter: approx. 23 m, depth approx. 37 m); 8 recesses for technical equipment inside the tunnel

Construction method:

Lot 3.1: Auxiliary tunnels: tunnel excavator with pipe and spile canopy support systems

Lot 3.2: Main tunnel: TBM tunnelling using a convertible TBM, operated both in hard rock mode (4,105 m) and in slurry mode (277 m), shield diameter: 11.23 m; double lining: segmental lining with in-situ concrete inner lining with external water proofing; Escape and rescue tunnel: 4,390 m constructed by a Gripper-TBM and 70 m using a roadheader, TBM diameter: 4.75 m, lining: shotcrete with wire mesh reinforcement and anchors

Geology:

Lot 3.1: Ground moraine (glacial gravels)

Lot 3.2: Rock (molasse) and loose rock (gravel, lake sediments)

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>4,537 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a convertible TBM</td>
</tr>
</tbody>
</table>
General Data:
Project: Limmern Access Tunnel I, Section A1, transportation tunnel to the machine cavern of the new extension to Limmern Pumped Storage Power Plant
Main Contractor: Kraftwerke Linth-Limmern AG (KLL)
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: October 2009 to May 2013
Net construction costs: € 89 million

Technical data:
Scope of work: Length of access tunnel (inclined tunnel): 3,762 m, gradient: 24 %, internal diameter: min. 7.30 m;
Portal structure / cut and cover tunnel, length: 18 m;
Horizontal access tunnel to valley station, length: 219 m, excavated cross-section: approx. 68 m²;
Cavern of valley station, length: 35 m, excavation volume: 9,600 m³
Construction method: Inclined tunnel: tunnelling using a Gripper-TBM, bore diameter of TBM: 8.03 m, lining: anchors, wire mesh reinforcement and 2 layers of shotcrete;
Access tunnel to valley station: drill and blast method with sprayed concrete support;
Cavern of valley station: drill and blast method
Geology: Quintner limestone with karstic features

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Logistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Access tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>3,762 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using Gripper TBM as well as drill and blast method</td>
</tr>
</tbody>
</table>
General Data:

Project: Tridel Tunnel in Lausanne, Switzerland, single-track railway tunnel
Main Contractor: Tridel SA Lausanne, Switzerland
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: 2004 to 2006
Gross construction costs: €35 million

Technical data:

Scope of work: Length: 3.6 km, excavated area: 40 m²
Construction method: Excavation using a roadheader with pneumatic-tired material transport;
 single-pass lining, with anchored shotcrete, partly with arches
Geology: Molasse, partly eroded

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>3,600 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>Excavation using a roadheader with pneumatic-tired material transport</td>
</tr>
</tbody>
</table>
General Data:

Project: Uetliberg Motorway Tunnel, two parallel tunnels, each for three lanes
Main Contractor: Baudirekton Kanton Zürich [Building Authority of the Canton of Zurich]
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: 2000 to 2007
Gross construction costs: € 340 million

Technical data:

Scope of work: 2 tunnels, each 4.4 km long, excavated area: 160 m²
Construction method: Soft ground tunnelling: approx. 1.6 km in 7 sections; Drill and blast tunnelling: approx. 1.2 km in 3 sections; Pilot TBM (5 m diameter): 5.6 km; Tunnel bore extender TBE (14.40 m diameter): 5.6 km; Cut and cover method: approx. 0.4 km
Geology: Molasse (partly eroded at the end of the tunnels) and moraine

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road Tunnel</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 4,400 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunneling and drill and blast method</td>
</tr>
</tbody>
</table>
Oenzberg Tunnel
Switzerland

General Data:

Project: Oenzberg Tunnel
double-track railway tunnel,
new railway line between Zurich and Bern (200 km/h)
Main Contractor: SBB Project Group “Neubaustrecke Mattstetten – Rothrist”
[Swiss Federal Railways]
Client: Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period: 1999 to 2003
Gross construction costs: € 150 million

Technical data:

Scope of work: 1 double-track railway tunnel (Oenzberg Tunnel), total length: 3,161 m, of which 2,265 m were driven
using a TBM, internal diameter: 10.84 m;
2 single-track branch-off tunnels (Wolfacher Tunnels),
lengths: 314 m and 440 m, excavated cross-section: 80 m²
Construction method: Oenzberg Tunnel: TBM-tunnelling using a convertible TBM:
1,925 m in hard rock mode, 340 m in slurry shield mode, shield diameter: 12.33 m, double lining consisting of reinforced concrete segments and an in-situ concrete inner lining with external water proofing;
branch-off tunnels (Wolfacher Tunnels): roadheader tunnelling: 900 m, sprayed concrete lining (SCL) method;
cut and cover method = 0.1 km
Geology: Molasse, moraine

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>3,161 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using a convertible TBM</td>
</tr>
</tbody>
</table>
General Data:

- **Project:** Complete remodelling of the particle accelerator
- **Main Contractor:** CERN – European Organization for Nuclear Research
- **Client:** Wayss & Freytag Ingenieurbau AG in a joint venture
- **Construction period:** 1998 to 2003
- **Gross construction costs:** € 70 million

Technical data:

- **Scope of work:** 3 shafts, depth: 100 m, max. diameter: 25 m; 2 caverns with a volume of 70,000 m³ and 100,000 m³ respectively; various smaller tunnels
- **Construction method:** Sprayed concrete lining method with excavator and chisel, in-situ concrete inner lining
- **Geology:** Molasse

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Type</th>
<th>Length</th>
<th>Construction Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure</td>
<td>Logistics tunnel</td>
<td>3,600 m</td>
<td>Sprayed concrete lining (SCL) method with excavator and chisel</td>
</tr>
</tbody>
</table>
Singapore Metro, North-East Line, Contract C704
Singapore

General Data:
Project: Singapore Metro, North East Line, Contract C704, single-track metro tunnel
Main Contractor: Land Transport Authority of Singapore (LTA)
Client: Wayss & Freytag AG as technical and commercial leader of a joint venture
Construction period: 1997 to 2002
Gross construction costs: € 177 million

Technical data:
Scope of work:
2 tunnel tubes, length: 2,550 m each, internal diameter: 5.80 m,
6 cross-passages at intervals of 250 m,
2 stations:
Serangoon Station, 205 m long, Woodleigh Station, 210 m long, built in an open excavation supported by shoring (soldier piles and timber lagging), designed as civil defence shelters, turn-key
1 viaduct with 2 separate superstructures with 2 x 3 lanes, length:
1,750 m, width: 2 x 11.40 m, using overhead launching system and the free cantilever method for large-span areas, contiguous bored pile walls for Braddell Bartley Underpass, approx. 1 km long, and soldier piles and timber lagging for the excavation of the Upper Paya Lebar Underpass box structure, extensive roadworks, 3 pedestrian bridges, 1 switching substation

Construction method: TBM tunnelling using 2 EPB shields, shield diameter: 6.56 m, cross-passages built using NATM techniques with an in-situ concrete inner lining

Geology: Sand, clay, granite

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Metro tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 2,550 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling using an EPB shield</td>
</tr>
</tbody>
</table>
General Data:

Project: JV Rastatt Tunnel
Main Contractor: Ed. Züblin AG, Hochtief Solutions
Client: DB Netz AG (German Railway) represented by DB Projekt Bau GmbH
Contractor: Wayss & Freytag Ingenieurbau AG, Tunnelling Division, Tunneling Technology Department
Construction period: August 2015 to February 2018

Technical data:

Scope of work:
Design, calculation, verification, procurement, installation, putting into operation, dismantling and maintenance of the following components:
- System for the separation of excavated material: 1 x separation plant 2,450 m³/h, 1 x separation plant 2,500 m³/h
- Belt conveying system for the separation plant with separation of fine and coarse grains
- Mud dewatering system with polymer conditioning: combination of 3 x filter presses + 1 x centrifuge
- Container system for fresh and waste bentonite slurry suspension with ancillary equipment: 7 x individual containers with a total effective volume of 7,075 m³
- Internal pipe and feeding system
- Bentonite batching system and silos: 45-150 m³/h and 180 m³ storage capacity
- System for the generation of compressed air: compressed air station with compressed-air reservoir
- Booster system: booster station + cooling tower
- Provision of staff for installation, putting into operation, operation + dismantling

Construction method: Slurry shield drive with segmental lining

Geology:
Tertiary, gravel, sandy clay, alluvial clay, drive below groundwater table with pressing groundwater

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, single-track</td>
</tr>
<tr>
<td>Length</td>
<td>4,000 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling with slurry shield</td>
</tr>
</tbody>
</table>
Eppenberg Tunnel
Switzerland

General Data:
- Project: JV Eppenberg Tunnel (Switzerland)
- Main Contractor: SBB Infrastructure
- Client: JV Marti Tunnelbau AG, Wayss & Freytag Ingenieurbau AG
- Construction period: April 2017 – March 2018

Technical data:

Scope of work:
1. Design, calculation, verification, procurement, installation, putting into operation, dismantling and maintenance of the following components:
 1.1. System for the separation of excavated material: 1 x separation plant 2,400 m³/h
 1.2. Belt conveying system for the separation plant with separation of fine and coarse grains
 1.3. Mud dewatering system with polymer conditioning: 4 x filter presses
 1.4. Container system for fresh and waste bentonite slurry suspension with ancillary equipment 6 x individual containers with a total effective volume of 5,700 m³
 1.5. Internal pipe and feeding system
 1.6. Bentonite batching system and silos: 2 x 30-60 m³/h und 2 x 80 m³ storage capacity
 1.7. Slurry circuit system: 2 x feeding pumps and 2 x slurry pumps
2. Provision of staff for installation, putting into operation, dismantling

Construction method: Slurry shield drive with segmental lining

Geology: Molasse, gravel, sand

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Railway tunnel, double-track</td>
</tr>
<tr>
<td>Length</td>
<td>2,613 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling with slurry shield</td>
</tr>
</tbody>
</table>
General Data:

Project: Combinatie Rotterdamsebaan
Main Contractor: Gemeente Den Haag, Projectorganisatie Rotterdamsebaan, Netherlands
Client: JV BAM Infra, BAM Infra Verkeerstechniek, Wayss & Freytag Ingenieurbau AG, KWS Infra, Van Hattum en Blankevoort, Vialis
Construction period: August 2017 – March 2019

Technical data:

Scope of work:

1. Supervision of refurbishment and modification of TBM from Sluiskil project (cons. No. 9), boring diameter 11.38m
2. Design, calculation, verification, procurement, installation, putting into operation, dismantling and maintenance of the following components:
 2.1. System for the separation of excavated material: 1 x separation plant 2,500 m³/h
 2.2. Belt conveying system for the separation plant with separation of fine and coarse grains
 2.3. Bentonite batching system and silos: 30-100 m³/h and 2 x 50 m³ storage capacity
 2.4. Mud dewatering system with polymer conditioning: 2 x centrifuges and 1 x binder plant
 2.5. Container system for fresh and waste bentonite slurry suspension with ancillary equipment: 6 x individual containers with a total effective volume of 7,535 m³
 2.6. Internal pipe and feeding system
 2.7. Slurry circuit system: 1 x feeding pump and 1 x slurry pump
 2.8. Booster system: booster station + cooling tower
 2.9. System for the generation of compressed air: compressed air station with compressed-air reservoir
 2.10. System for decomposition of solids in filtrate water: filtrate water treatment plant
3. Provision of staff for installation, putting into operation, operation and dismantling

Construction method: Slurry shield drive with segmental lining

Geology: Quaternary fills of sands and coarse clays, interstratifications of peat and clay, tertiary sands

<table>
<thead>
<tr>
<th>Utilisation</th>
<th>Infrastructure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Road tunnel, double-lane</td>
</tr>
<tr>
<td>Length</td>
<td>2 x 1,645 m</td>
</tr>
<tr>
<td>Construction Method</td>
<td>TBM tunnelling with slurry shield</td>
</tr>
<tr>
<td>CONSTRUCTION PERIOD</td>
<td>PROJECT AND CLIENT</td>
</tr>
<tr>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>2017</td>
<td>Oosterweelverbinding, Antwerp, Belgium. THV Schijnpoort Joint Venture, Borgerhout (Antwerp), Belgium</td>
</tr>
<tr>
<td>2016/2019</td>
<td>Tunnel Gateway Gardens, Frankfurt am Main (Germany); Deutsche Bahn AG</td>
</tr>
<tr>
<td>2016/2018</td>
<td>Wallring Sewer, Hamburg, Germany. Hamburger Stadtentwässerung (wastewater department of the City of Hamburg), Germany</td>
</tr>
<tr>
<td>2015/2021</td>
<td>Thames Tideway West, London, UK. Bazalgette Tunnel Ltd. (“Tideway”), London, UK</td>
</tr>
<tr>
<td>2015/2020</td>
<td>Victory Boogie Woogie Tunnel (for the Rotterdamsedeebaan artery road), The Hague, Netherlands. Gemeente Den Haag (Municipality of The Hague), Projectorganisatie Rotterdamsebaan, Netherlands</td>
</tr>
<tr>
<td>2015/2019</td>
<td>Epenbergtunnel, Part 1, (Switzerland); SBB Infrastruktur</td>
</tr>
<tr>
<td>2015/2018</td>
<td>Port Said Tunnels, Service Agreement, Egypt. Civil Joint Venture Arab Contractors and Orascom Construction, Cairo, Egypt</td>
</tr>
<tr>
<td>2015/2017</td>
<td>Darmstheim Northern Bypass, L182 Darmstheim Tunnel (D); Federal State of Baden-Württemberg, represented by Regierungspräsidium Stuttgart</td>
</tr>
<tr>
<td>CONSTRUCTION PERIOD</td>
<td>PROJECT AND CLIENT</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>2015/2016</td>
<td>Europagarten Tunnel, Frankfurt am Main (Germany); Aurelis Asset GmbH, represented by Aurelis Real Estate GmbH & Co. KG, Eschborn</td>
</tr>
<tr>
<td>2015</td>
<td>Replacement Pipeline Tunnel under the River Rhine in Leverkusen, Germany; Currenta GmbH & Co. OHG, Leverkusen, Germany</td>
</tr>
<tr>
<td>2014/2018</td>
<td>Gemeinschaftskraftwerk Inn hydroelectric power plant (Austria); Tiroler Wasserkraft/EKW-OEE/Verbund</td>
</tr>
<tr>
<td>2014/2017</td>
<td>Renovation of light railway system under Dortmund Central Station, Section 20 (D); Stadt Dortmund (Tiefbauamt)</td>
</tr>
<tr>
<td>2014/2017</td>
<td>A 9 Pyhrn Motorway, Construction of Second Tubes, Section 5 Spering and Falkenstein Tunnels, Section 4 Klausler and Traunfried Tunnels (Austria); ASFINAG Baumanagement GmbH</td>
</tr>
<tr>
<td>2013/2017</td>
<td>A 9 Pyhrn Motorway, Construction of Second Tube for Gleinalm Tunnel (Austria); ASFINAG Baumanagement GmbH</td>
</tr>
<tr>
<td>2013/2016</td>
<td>Widderstall Tunnel, New Stuttgart-Augsburg Railway Line, Wendlingen-Ulm-Section, PFA Altböhl, VE: 230+1 (D); DB Projekt Stuttgart-Ulm GmbH</td>
</tr>
<tr>
<td>2013/2014</td>
<td>Seepage Water Tunnel at Sylvenstein Reservoir near Lenggries, Germany; Wasserrirtschaftsamt Weilheim for Freestate Bavaria</td>
</tr>
<tr>
<td>2013</td>
<td>Sylvenstein Reservoir - Dam Retrofit, Sections 1-3, near Lenggries, Germany Wasserwirtschaftsamt Weilheim, Germany</td>
</tr>
</tbody>
</table>

Legend:
- **EPB shield**
- **Hard Rock TBM**
- **Mixshield / Hydrosheild**
- **Drill and blast method**
- **Open construction / Cut and cover method**
- **Top-down method**
- **Gripper-TBM**
- **Tunnel excavator**
- **Road header**
- **Pipe jacking**
<table>
<thead>
<tr>
<th>CONSTRUCTION PERIOD</th>
<th>PROJECT AND CLIENT</th>
<th>SCOPE OF WORKS</th>
<th>CONSTRUCTION METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012/2018</td>
<td>Stuttgart 21, PFA 1.5, Lot 3 railway connection from Stuttgart Main Station to Bad Cannstatt (Germany); DB Netz AG, represented by DB Projektbau Stuttgart-Ulm GmbH</td>
<td>Railway Tunnel, single track; length: 5,050 m and double track length: 1,050 m; A = 70-220 m²; metro tunnel, 345 m single track and 575 double-track, A = 50-100 m²; 790 m rescue tunnel, A = 20-40 m²</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2012/2017</td>
<td>Large-Scale Emscher Sewerage Tunnel Project, Section 90 between Dortmund Mengede and Sewerage Plant Bottrop (Germany), Emschergenossenschaft</td>
<td>Length 47,000 m, construction of 130 excavation pits, 115 shafts, sewerage tunnel in 117 individual pipes varying in length from under 20 m to 1,150 m</td>
<td>Pipe jacking EPB Shield Hydroshield</td>
</tr>
<tr>
<td>2012/2013</td>
<td>Koralmbahn Graz-Klagenfurt, Koralmtunnel, Lot Ventilation Building Paierdorf B 19668 (Austria); ÖBB - Infrastruktur Bau AG</td>
<td>Ventilation building northern tube, entrance cavern, length: 18 m, A = 120 m²; ventilation tunnel North, length: 93 m, A 36 m², gradient 14°, southern tube widening to full diameter; length: 250 m, ventilation shaft finishing, H = 117 m, maintaining exploration building during construction period</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2011/2018</td>
<td>Crossrail Western Tunnels incl. Bond Street and Tottenham Court Road and Farringdon Stations, London, Contracts C300, C410 and C435 (United Kingdom); Crossrail Limited</td>
<td>2 parallel, single-track railway tunnels; length: 5.9 km each; shield diameter: 7.10 m; internal diameter: 6.20 m; segmental lining</td>
<td>EPB shield</td>
</tr>
<tr>
<td>2011/2015</td>
<td>Corrib Pipeline Tunnel (County Mayo, Ireland); Shell E&P Ireland Ltd.</td>
<td>Utility tunnel for a gas pipeline; length: 4,900 m; shield diameter: 4.24 m; internal diameter: 3.50 m; steel fibre reinforced segmental lining; installation of gas pipeline by floating method</td>
<td>Hydroshield</td>
</tr>
<tr>
<td>2010/2016</td>
<td>Tunnel Kö-Bogen, Duesseldorf (Germany); Landeshauptstadt Duesseldorf, Amt f. Verkehrsmangement</td>
<td>Inner City Road Tunnel and ramps in open construction, length: 1,603 m; Bored Piles and diaphragm walls, cover</td>
<td>Excavator and top-down method</td>
</tr>
<tr>
<td>2010/2015</td>
<td>Sluiski Canal Crossing, Terneuzen/Sluisk (Netherlands); Province of Zeeland represented by BV Kanaalkruising Sluisk</td>
<td>Twin-bore road tunnel; length: 1.15 km each; shield diameter: 11.32 m; internal diameter: 10.10 m; reinforced concrete segmental lining</td>
<td>Hydroschild</td>
</tr>
<tr>
<td>2010/2012</td>
<td>Glendoe Recovery Project (Scotland, United Kingdom); Scottish Southern Energy</td>
<td>Construction of a bypass tunnel (length: 605 m, A = 28 m²) around a collapse area and an access tunnel (length: 550 m, A = 28 m²) to the headrace tunnel; repair works in the headrace and tailrace tunnel</td>
<td>Drift and blast method</td>
</tr>
<tr>
<td>2009/2015</td>
<td>Tunnel Luisi-Kiesselbach-Platz, Munich (Germany); City of Munich</td>
<td>Inner City Road Tunnel, length: 2.800 m, bored piles, top-down method 2,000 m; cut and cover method approx. 800 m</td>
<td>Bored piles, top-down method, cut and cover method</td>
</tr>
<tr>
<td>2009/2015</td>
<td>Limmern Access Tunnel I (Switzerland); Kraftwerke Linth-Limmern AG</td>
<td>Access tunnel (inclined tunnel); length: 3.762 m; shield diameter: 8.03 m; internal diameter: min. 7.30 m; lining: anchors, wire mesh reinforcement and 2 layers of shotcrete</td>
<td>Gripper-TBM</td>
</tr>
<tr>
<td>2009/2013</td>
<td>Koralmbahn zwischen Graz und Klagenfurt, Bg61 Koralmtunnel, Contract Section KAT 1 (Austria); ÖBB Infrastruktur Bau AG</td>
<td>Two single-track drill and blast railway tunnels; length: 1,961 m each; 280 m of double-track tunnel using the cut and cover method</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2009/2012</td>
<td>Central Services Tunnel for the Large Lock of the Kiel Canal locks, Brunsbüttel, Germany. Wasser- und Schifffahrtsverwaltung des Bundes, Wasser- und Schifffahrtsamt Brunsbüttel (Waterways and Shipping Administration of the Federal Government, Brunsbüttel Water and Shipping Authority Germany</td>
<td>Construction of a new services tunnel under the double locks at the western end of the Kiel Canal. The tunnel was driven using the pipe jacking technique, depth: approx. 35 m below ground surface. Construction of 5 shafts, average depth: 35 m, mostly using diaphragm wall techniques. Length: 450 m</td>
<td>AVN 2000 machine</td>
</tr>
<tr>
<td>CONSTRUCTION PERIOD</td>
<td>PROJECT AND CLIENT</td>
<td>SCOPE OF WORKS</td>
<td>CONSTRUCTION METHOD</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>2009/2012</td>
<td>GSED - Coal-Fired Power Plant Wilhelmshaven, Unit 1; Cooling Water System - Onshore (Lot C2), Germany; GDF SUEZ Energie Deutschland AG, Berlin, Germany</td>
<td>Cooling water system for a new coal-fired power plant, Utility tunnel consisting of 4 cooling water pipelines DN 3400, each approx. 300 m long, and a fish return pipeline DN 1200, length: 300 m. Construction of start shaft (35 m x 25 m x 15 m) and reception shaft (45 m x 11 m x 15 m). Pipe jacking using 2 slurry-supported TBMs, external diameter: 4.1 m; composite pipes, consisting of a reinforced concrete pipe with an integrated HDPE pipe liner. Length: 1,200 m</td>
<td>Hydroshield + AVN 2000 machine, Pipe jacking, Slurry Mode</td>
</tr>
<tr>
<td>2009/2012</td>
<td>German Unity Transport Project VDE 8, Upgraded and New Railway Lines between Nuremberg and Berlin (Germany); Brandkopf Tunnel and Lohneberg Tunnel, DB Netz AG</td>
<td>2 NATM tunnels; lengths: 1,493 m and 688 m</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2009/2012</td>
<td>German Unity Transport Project VDE 8, Upgraded and New Railway Lines between Nuremberg and Berlin (Germany); Silberberg Tunnel, DB Netz AG</td>
<td>Double-track railway tunnel; length: 7,391 m</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2008/2015</td>
<td>Schuman-Josaphat Tunnel (Belgium); Department Mobilitéit en Vervoer</td>
<td>Double-track railway tunnel; length: 1,400 m; Structural modification of Schuman train and metro station; construction of double-track Schuman-Josaphat-Tunnel, length: 1,400 m, excavation partly, below a pipe umbrella support system constructed using the pipe jacking method</td>
<td>Pipe jacking, Open Mode, Top-down Method</td>
</tr>
<tr>
<td>2008/2013</td>
<td>Liefkenshoek Rail Link, Antwerp (Belgium); Infrabel</td>
<td>Double-track railway tunnel; length: 12 km; shield diameter: 8.39 m; internal diameter: 7.30 m; segmental lining</td>
<td>Hydroshield</td>
</tr>
<tr>
<td>2008/2010</td>
<td>Ems-Dollard Crossing (between Germany and the Netherlands); Nederlandse Gasunie</td>
<td>Utility tunnel for a gas pipeline; length: 4,050 m; shield diameter: 3.6 m; internal diameter: 3.0 m; steel fibre reinforced segmental lining</td>
<td>Hydroshield</td>
</tr>
<tr>
<td>2008/2012</td>
<td>Stafelter Tunnel (Luxembourg); Grand-Duché de Luxembourg, Ministère des Travaux Publics, represented by Administration des Ponts et Chausées</td>
<td>2 double-lane motorway tunnels; length: 1,850 m each; excavated area = 74 - 114 m²; 1,650 m are constructed using mining techniques and 200 m using the cut and cover method</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2007/2014</td>
<td>Weinberg Tunnel, Sections 3.1 and 3.2, Zurich, as part of the Zurich Main Station-Altstetten-Oerlikon Diameter Line (Switzerland); SBB AG represented by Infrastruktur - Projekt Management Durchmesserlinie</td>
<td>Section 3.1: 220 running metres of longitudinal tunnels (excavated area: approx. 36 m²) and 390 running metres of transverse tunnels (excavated area: 14 m² - 17 m²). Section 3.2: Double-track railway tunnel; total length: 4,577 m, of which 4,382 m are driven by convertible TBM (hard rock mode: 4,105 m, slurry mode: 277 m); TBM diameter: 11.23 m; internal diameter: 9.74 m; double lining: segmental lining with in-situ concrete inner lining with external water proofing. Escape and rescue tunnel; length 4,460 m; excavated by Gripper-TBM (4,390 m) and road header (70 m); shield diameter 4.75 m; internal diameter: 4.35 m; lining with shotcrete with wire mesh reinforcement and anchors</td>
<td>Hard Rock TBM and Hydroshield, Gripper-TBM</td>
</tr>
<tr>
<td>2007/2013</td>
<td>Wehrhahn Linie Lot 2, Germany; City of Duesseldorf</td>
<td>Metro tunnel with connecting platform to Station Heinrich-Heine Allee, drive length: 75 m, ground freezing</td>
<td>Drill and blast method, ground freezing</td>
</tr>
</tbody>
</table>

- **EPB shield**
- **Hard Rock TBM**
- **Mixshield / Hydroshield**
- **Drill and blast method**
- **Open construction / Cut and cover method**
- **Top-down method**
- **Gripper-TBM**
- **Tunnel excavator**
- **Road header**
- **Pipe jacking**
<table>
<thead>
<tr>
<th>CONSTRUCTION PERIOD</th>
<th>PROJECT AND CLIENT</th>
<th>SCOPE OF WORKS</th>
<th>CONSTRUCTION METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007/2012</td>
<td>Diabolo Project, Brussels Airport (Belgium); Northern Diabolo nv (PPP company for the railway tunnel) and Via-Zaventem nv (PPP company for the road construction part)</td>
<td>> TBM-driven single-track railway tunnels, length: approx. 1,100 m each, shield diameter: 8.27 m, internal diameter: 7.30 m, segmental lining; approx. 1,100 m of tunnel built using the top-down method; approx. 2,300 m of cut and cover tunnel</td>
<td>Mixshield, top-down method, cut and cover method</td>
</tr>
<tr>
<td>2007/2010</td>
<td>Koralm Railway Line between Graz and Klagenfurt, B1581 Contract Section 3 - Hengsberg Tunnel (Austria); ÖBB Infrastruktur Bau AG</td>
<td>Double-track railway tunnel, length: 1,700 m; 1,035 m mined tunnel; 450 m driven using the cut and cover method; 250 m built using the top-down method</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2007/2010</td>
<td>U6 Metro Link to Fasanenhof 26th section (Germany); Stuttgarter Straßenbahnen AG</td>
<td>Double-track metro tunnel; cut and cover tunnel, length: 852 m; mined tunnel, length: 380 m, excavated cross-section: 90 m²; sprayed concrete lining (SCL)</td>
<td>Tunnel excavator and cut and cover method</td>
</tr>
<tr>
<td>2007/2009</td>
<td>Völkermarkt Bypass Lilienberg Tunnel; Section 2 (Austria); Land Kärnten</td>
<td>Two-lane road tunnel; length: 1,090 m</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2007</td>
<td>Pipe jacking under Leipzig Main Station, Germany. Joint Venture City Tunnel Leipzig, Los C, Germany</td>
<td>Construction of two pilot tunnels using the pipe jacking method in the course of the construction of Leipzig City Tunnel, Section C. Length: 10 m + 145 m</td>
<td>AVN 2000 machine and Hydroshield</td>
</tr>
<tr>
<td>2006/2012</td>
<td>Finne Tunnel (Germany); DB Netz AG, represented by DB Projekt Bau GmbH, Projektzentrum Leipzig</td>
<td>Single-track railway tunnel; length: 13,644 m; shield diameter: 10.88 m; internal diameter: 9.60 m; segmental lining</td>
<td>Hydroshield, Hard Rock TBM</td>
</tr>
<tr>
<td>2006/2010</td>
<td>Roppen Tunnel, Second Tube (Austria); ASFINAG Baumanagement GmbH</td>
<td>Double-lane motorway tunnel; length: 5,095 m; sprayed concrete lining (SCL)</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2006/2009</td>
<td>B1 Federal Road Wiener Straße, Hennendorf Bypass (Austria); Land Salzburg, Landesbaudirektion</td>
<td>Double-lane road tunnel; total length: 2,150 m; 1.4 km by drill and blast method in combination with tunnel excavator; 732 m by cut and cover method</td>
<td>Drill and blast method, tunnel excavator and cut and cover</td>
</tr>
<tr>
<td>2004/2010</td>
<td>Munich Metro, Line 3 North, Section 2, (Germany); Landeshauptstadt München, Baureferat U-Bahn</td>
<td>Single-track metro tunnel; length: 2,410 m; shield diameter: 7.34 m; internal diameter: 6.30 m; segmental lining</td>
<td>Hydroshield</td>
</tr>
<tr>
<td>2004/2009</td>
<td>Grouft Tunnel (Luxembourg); Administration des Ponts et des Chaussées</td>
<td>Twin-tube, double- and triple-lane motorway tunnels; length: 3,000 m each; A = 96 m² and 174 m² respectively; sprayed concrete lining</td>
<td>Drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>2004/2008</td>
<td>Hubertus Tunnel, The Hague (Netherlands); Gemeente Den Haag</td>
<td>Road tunnel; length 2,980 m; shield diameter: 10.50 m; internal diameter: 9.40 m; segmental lining</td>
<td>Mixshield</td>
</tr>
<tr>
<td>2003/2014</td>
<td>Cologne North-South Light Railway, Southern Section (Germany); KVB Kölner Verkehrs-Betriebe AG</td>
<td>Single-track metro tunnel; length: 5,400 m; shield diameter: 8.39 m; internal diameter: 7.30 m; segmental lining</td>
<td>Mixshield</td>
</tr>
<tr>
<td>2003/2011</td>
<td>Katzenberg Tunnel (Germany); DB Netz AG, represented by DB Projektbau GmbH, Projektzentrum Karlsruhe</td>
<td>Single-track railway tunnel; length: 17,968 m; shield diameter 11.12 m, internal diameter 9.60 m, segmental lining</td>
<td>EPB shield</td>
</tr>
<tr>
<td>2003/2006</td>
<td>Tridel Tunnel, Lausanne (Switzerland); Tridel SA</td>
<td>Single-track railway tunnel; length: 3,600 m; A = 40 m²; single-pass lining with anchored shotcrete</td>
<td>Road header</td>
</tr>
<tr>
<td>CONSTRUCTION PERIOD</td>
<td>PROJECT AND CLIENT</td>
<td>SCOPE OF WORKS</td>
<td>CONSTRUCTION METHOD</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>2003/2006</td>
<td>SMART Tunnel, Kuala Lumpur (Malaysia); MMC Eng. Group Bhd. / Camuda Eng. Sdn. Joint Venture</td>
<td>Flood relief and road tunnel; length 5,230 m; shield diameter: 13.21 m; internal diameter: 11.83 m; segmental lining</td>
<td>Mixshield</td>
</tr>
<tr>
<td>2002/2007</td>
<td>Vienna Metro, Line 2, Section 2, Taborstrasse (Austria); Wiener Linien GmbH & Co. KG</td>
<td>Single-track metro tunnel; length: 2,200 m; A = 39-44 m²; sprayed concrete lining (SCL)</td>
<td>Tunnel excavator</td>
</tr>
<tr>
<td>2002/2005</td>
<td>Dortmund Ostentor Light Railway Line III, Contract Section Sio1.1, 2nd Stage; (Germany); Stadt Dortmund, Stadtbahnbaumaat</td>
<td>1,100 m NATM tunnel; 100 m closed ramp as a double-track rectangular cross-section; 120 m open ramp as a retained cut</td>
<td>Tunnel excavator and cut and cover method</td>
</tr>
<tr>
<td>2001/2005</td>
<td>Antwerp North-South Link (ASDAM), (Belgium); NMBS CCE Strategie Ontwikkeling</td>
<td>Single-track railway tunnel; length 2,456 m; shield diameter: 8.27 m; internal diameter: 7.30 m; segmental lining</td>
<td>Mixshield</td>
</tr>
<tr>
<td>2001/2004</td>
<td>Channel Tunnel Rail Link, Contract C250, London (United Kingdom); Union Railways (North) Ltd.</td>
<td>Single-track railway tunnel; length 10,600 m; shield diameter: 8.15 m; internal diameter: 7.15 m; steel fibre reinforced segmental lining</td>
<td>EPB shield</td>
</tr>
<tr>
<td>2000/2004</td>
<td>Oenzberg Tunnel (Switzerland); Schweizerische Bundesbahnen SBB, Projektgruppe Neubaustrecke Mattstetten-Rothrist</td>
<td>Double-track railway tunnel; total length: 3,161 m (2,265 m driven by TBM); shield diameter: 12.34 m; internal diameter: 10.84 m; double lining consisting of reinforced concrete segments and in-situ concrete inner lining with external water proofing. Branch off tunnels; lengths: 314 m and 440 m (A = 80 m³); excavated by road header</td>
<td>Hard Rock TBM and Hydroshield, Road header</td>
</tr>
<tr>
<td>2000/2003</td>
<td>Athens Metro, Line 2 Extension, Sepolia-Thivon Tunnel (Greece); Attiko Metro A.E.</td>
<td>Double-track metro tunnel; length 2,700 m; shield diameter: 9.50 m; internal diameter: 8.48 m; segmental lining</td>
<td>Open Mode</td>
</tr>
<tr>
<td>2000/2001</td>
<td>Passenger Transport System at Zurich Airport (Switzerland); Flughafen Immobilien-gesellschaft (FIG)</td>
<td>Passenger transport tunnel; length 1,800 m; shield diameter: 6.28 m; internal diameter: 5.40 m; segmental lining</td>
<td>Mixshield</td>
</tr>
<tr>
<td>1999/2008</td>
<td>Uetliberg Tunnel (Switzerland); Baudirektion Kanton Zürich</td>
<td>Two parallel triple-lane motorway tunnels, length: 2 x 4.4 km; excavated area: 160 m²; soft ground tunnelling: 1.6 km in 7 sections; drill and blast tunnelling: 1.2 km in 3 sections; Pilot TBM, diameter: 5 m; 5.6 km (extended to 14.4 m diameter); cut and cover: 0.4 km</td>
<td>TBM and TBE, drill and blast method and tunnel excavator</td>
</tr>
<tr>
<td>1999/2003</td>
<td>Rennsteig Tunnel on BAB A71 Erfurt-Schweinfurt (Germany); DEGES Deutsche Einheit Berlin Fernstraßenplanungs- und bau GmbH</td>
<td>Two-lane motorway tunnel; twin-tube; length: 2 x 7.9 km (A = 80 m³); sprayed concrete lining (SCL)</td>
<td>Drill and blast method</td>
</tr>
<tr>
<td>1999/2002</td>
<td>Velbert-Langenberg Tunnel (Germany); Landschaftsverband Rheinland/ Essen</td>
<td>Double-lane road tunnel; length 486 m (A = 85 m³); sprayed concrete lining (SCL)</td>
<td>Drill and blast method in combination with tunnel excavator</td>
</tr>
<tr>
<td>1998/2003</td>
<td>CERN Nuclear Research Centre, Geneva (Switzerland); CERN - European Organization for Nuclear Research</td>
<td>Construction of industrial buildings on ground level and underground buildings for ATLAS-Detector; 3 shafts, max. diameter: 25 m, 100 m deep; 2 caverns of 70,000 m³ and 100,000 m³; various smaller tunnels</td>
<td>SCL method with tunnel excavator and chisel</td>
</tr>
<tr>
<td>CONSTRUCTION PERIOD</td>
<td>PROJECT AND CLIENT</td>
<td>SCOPE OF WORKS</td>
<td>CONSTRUCTION METHOD</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1998/2002 Botlek Tunnel (Netherlands); NS Railinfrabeheer, b.v. (Dutch Railway)</td>
<td>Single-track railway tunnel; length 3,670 m; shield diameter: 9.75 m; internal diameter: 8.65 m; segmental lining</td>
<td>EPB shield</td>
<td></td>
</tr>
<tr>
<td>1998/1999 New baggage system at Zurich Airport (Switzerland); Flughafen Immobiliengesellschaft Zurich (FIG)</td>
<td>Baggage tunnel; length 490 m; shield diameter: 6.28 m; internal diameter: 5.40 m; segmental lining</td>
<td>Mixshield</td>
<td></td>
</tr>
<tr>
<td>1997/2003 Westerschelde Tunnel (Netherlands); Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat</td>
<td>Road tunnel; length: 13.200 m; shield diameter: 11.34 m; internal diameter: 10.10 m; segmental lining</td>
<td>Mixshield</td>
<td></td>
</tr>
<tr>
<td>1997/2003 Zimmerberg Base Tunnel, second double-track line between Zurich Main Station and Thalwil, Section 2.01 (Switzerland); Schweizerische Bundesbahnen (SBB)</td>
<td>Double-track railway tunnel; length 2,619 m; shield diameter: 12.34 m; internal diameter: 10.84 m; double lining consisting of reinforced concrete lining and in-situ inner lining with external water proofing</td>
<td>Hard Rock TBM, Hydroshield</td>
<td></td>
</tr>
<tr>
<td>1997/2003 Zimmerberg Base Tunnel, second double-track line between Zurich Main Station and Thalwil, Section 3.01 (Switzerland); Schweizerische Bundesbahnen (SBB)</td>
<td>Double-track railway tunnel; length 6,421 m; shield diameter: 12.29 m; internal diameter: 10.84 m; double lining consisting of reinforced concrete lining and in-situ inner lining with external water proofing</td>
<td>Hard Rock TBM</td>
<td></td>
</tr>
<tr>
<td>1997/2002 Singapore Metro, North East Line, Contract C704 (Singapore); Land Transport Authority of Singapore (LTA)</td>
<td>Single-track metro tunnel; length 5,100 m; shield diameter: 6.56 m; internal diameter: 5.80 m; segmental lining</td>
<td>EPB shield</td>
<td></td>
</tr>
<tr>
<td>1996/2001 New Cologne-Rhine/Main High-Speed Railway Line, Central Section, Lot B (Germany); Deutsche Bahn AG</td>
<td>Railway tunnels: Elzer Berg Tunnel (1,110 m); Himmelberg Tunnel (2,395 m); Wahnscheid Tunnel (775 m); Dickheck Tunnel (575 m); all: A = 147-164 m²; sprayed concrete lining (SCL)</td>
<td>Drill and blast method in combination with tunnel excavator</td>
<td></td>
</tr>
<tr>
<td>1996/2000 Munich Underground Railway, Line 2 East, Lot 2 Trudering (Germany); Landeshauptstadt München, U-Bahn-Referat</td>
<td>Metro tunnels; lengths: 3,200 m (A = 40 m²) and 300 m (A = 80m²); sprayed concrete lining (SCL)</td>
<td>Tunnel excavator</td>
<td></td>
</tr>
<tr>
<td>1996/2000 Rio Subterraneo Tunnel, Buenos Aires (Argentina); Aguas Argentinas S.A.</td>
<td>Water supply tunnel; length: 15,160 m; shield diameter: 4.35 m; internal diameter: 3.50 m; segmental lining</td>
<td>EPB shield</td>
<td></td>
</tr>
<tr>
<td>1996/1999 Izmir Light Rail Transit System (Turkey); City of Izmir</td>
<td>Double-track light rail tunnel; 1,388 m NATM tunnel (A = 64 m²); 284 m station (A = 130 -140 m²); sprayed concrete lining (SCL); 2 parallel, single-track shield-driven tunnels; total length: 2,750 m; shield diameter: 6.54 m; internal diameter: 5.92 m; segmental lining</td>
<td>Road header, EPB shield</td>
<td></td>
</tr>
<tr>
<td>1996/1998 Nuremberg Underground Railway, Line 2 North, Lot 4.1 (Germany); Stadt Nürnberg, Tiefbauamt</td>
<td>Ziegelstein Station and 1,540 m single-track metro tunnel (A = 38 m²); sprayed concrete lining (SCL)</td>
<td>Road header</td>
<td></td>
</tr>
<tr>
<td>1995/2003 Fourth tunnel under the river Elbe in Hamburg (Germany), Freie und Hansestadt Hamburg, Tiefbauamt, Projekte Ingenieurbau, Federal Republic of Germany</td>
<td>Road tunnel, total length of section: 4,403 m, tunnel section: 3,101 m, of which 2,561 m were driven by TBM, shield diameter: 14.20 m, internal diameter of tunnel: 12.35 m, segmental lining</td>
<td>Mixshield</td>
<td></td>
</tr>
<tr>
<td>1995/1999 Tweede Heineoordtunnel (Netherlands); Directoraat-Generaal Rijkswaterstaat, Ministerie van Verkeer en Waterstaat</td>
<td>Road tunnel; length: 1,900 m; shield diameter: 8.55 m; internal diameter: 7.60 m; segmental lining</td>
<td>Mixshield</td>
<td></td>
</tr>
<tr>
<td>CONSTRUCTION PERIOD</td>
<td>PROJECT AND CLIENT</td>
<td>SCOPE OF WORKS</td>
<td>CONSTRUCTION METHOD</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1995/1999 Engelberg Base Tunnel (Germany); Land Baden-Württemberg; Landesamt für Straßenwesen</td>
<td>Two parallel motorway tunnels; length: 2,600 m each (A = 200-330 m²); sprayed concrete lining (SCL)</td>
<td>Drill and blast method</td>
<td></td>
</tr>
<tr>
<td>1994/2001 Xiaolangdi Multipurpose Dam (China); Yellow River Water and Hydroelectric Power Development Corporation</td>
<td>Intake structure, tunnels, plunge pool, spillway, concrete lining, tunnel construction; sprayed concrete lining (SCL)</td>
<td>Drill and blast method</td>
<td></td>
</tr>
<tr>
<td>1993/1996 Feldmoching - Moosach Main Sewer (Germany); Landeshauptstadt München, Baureferat Kanalbau</td>
<td>Main sewer; length: 200 m (A = 28 m²); sprayed concrete lining (SCL)</td>
<td>Tunnel excavator with ground freezing</td>
<td></td>
</tr>
<tr>
<td>1991/1993 Vienna Underground Railway, Line U6/11 Spittelau (Austria); Stadt Wien, Stadtverwaltung Abt. 38</td>
<td>Sprayed concrete lining (SCL)</td>
<td>Tunnel excavator</td>
<td></td>
</tr>
<tr>
<td>1988/1991 Munich Underground Railway, Weyrechtstraße Station (Germany); Landeshauptstadt München, U-Bahn-Referat</td>
<td>Weyrechtstrasse Station and single-track metro tunnel; length: 1,090 m (A = 38 m²); sprayed concrete lining (SCL)</td>
<td>Tunnel excavator</td>
<td></td>
</tr>
<tr>
<td>1986/1993 Essen Light Rail, Section 32/33 (Germany); Stadt Essen, U-Bahn-Bauamt</td>
<td>Section 32: 200 m light rail tunnel; Section 33: approx. 160 m light rail tunnel; 334 m station tunnel; 3 nos. cross passages in NATM under compressed air; water pressure up to 1.7 bar.</td>
<td>EPB shield and tunnel excavator under compressed air</td>
<td></td>
</tr>
<tr>
<td>1985/1988 Munich Underground Railway, Line 3 South, Section 9.2 (Germany); Landeshauptstadt München, U-Bahn-Referat</td>
<td>Single-track tunnel between Baseler Str. Station and Fürstenried West Station; length: 1,300 m (A = 38 m²); sprayed concrete lining (SCL)</td>
<td>Tunnel excavator</td>
<td></td>
</tr>
<tr>
<td>1982/1987 Munich Underground Railway Line 5/9, Section 9.2 (Germany); Landeshauptstadt München, U-Bahn-Referat</td>
<td>Ostbahnhof Station and tunnels; 1,350 m single-track tunnel (A = 38 m²); 240 m double-track tunnel (A = 75-115 m²); sprayed concrete lining (SCL)</td>
<td>Tunnel excavator under compressed air</td>
<td></td>
</tr>
<tr>
<td>1982/1986 Munich Underground Railway, Section 7, (Germany); Landeshauptstadt München, U-Bahn-Referat</td>
<td>Lehel Station and tunnels; 2,145 m single-track tunnel (A = 38 m²); 340 m station tunnel (A = 85 m²); sprayed concrete lining (SCL)</td>
<td>Tunnel excavator under compressed air</td>
<td></td>
</tr>
</tbody>
</table>

- EPB shield
- Hard Rock TBM
- Mixshield / Hydroshield
- Drill and blast method
- Open construction / Cut and cover method
- Top-down method
- Gripper-TBM
- Tunnel excavator
- Road header
- Pipe jacking