Tunnelling Division Eschborer Landstraße 130-132 Persons to contact Mechanised Tunnelling Dr. Klaus Rieker
Dipl.-Ing. Sasc Dipl.-Ing. Sascha Boxheimer Telephone: +49 (o) $697929-400$ Telefax: $\quad+49$ (o) $697929-490$ Telefax: $\quad+49$ (o) 89780250250 $\begin{array}{llll}\text { Telefax: } & \begin{array}{ll}+49(0) 69729-490 \\ \text { E-Mail: } \\ \text { tunnelbau@wfib.de }\end{array} & \begin{array}{l}\text { Telefax: } \\ \text { E-Mail: }\end{array} & \begin{array}{l}+49(0) 8978025-105 \\ \text { ingbau.muenchen@wf-ib.de }\end{array}\end{array} \begin{aligned} & \text { Telefax: }\end{aligned} \begin{aligned} & \text { E-Mail: }\end{aligned}$

Central Division Wiesenstraße 21 a II Persons to contact Cut and cover method Dipl.-Ing. Dipl.- Wirtsch.-Ing. Thomas Fiedler
Dr--Ing. Holger Meseck Dr.-Ing. Holger Meseck
Telephone: +49 (o) $2115028-0$ Southern Division Geisenhausener Stra ersons to contact Conventional Tunnelling Dipl.-Ing. Helmut Weber pl.-Ing. Holger Sawitz

Tunnels

Connections for life

## ri w\&f

Wayss \& Freytag Ingenieurbau
Tunnelling Specialist of the Royal BAM Group

## Tunnels

Connections for Life

Creative engineering is our main focus. We understand design, conception and execution to be individually developed solutions in response to the tasks set by our clients.
As an internationally renowned construction company, we design environments, establish permanent connections between people and places and thus achieve perceptible improvements for both clients and users. In short: We create quality of life for the world of tomorrow.

Customer-oriented thinking and responsible actions form the basis of our business. After all, the success of each and every construction project is always closely linked to the quality of cooperation with our clients.
Wayss \& Freytag Ingenieurbau AG is a member of the Royal BAM Group, one of the biggest European construction companies with its head office in the Netherlands. This powerful foundation enables us to take full advantage of all chances offered by international cooperation. For our clients this results in the greatest possible transparency in all phases of a project as well as availability of comprehensive know-how in conjunction with maximum regional presence.
At Wayss \& Freytag Ingenieurbau AG more than 140 years of experience and the technological expertise of today converge. A lean structure ensures the optimum realization of our clients' projects. In our competence centres created just for this purpose specialist groups of our best staff work in close cooperation to find the most appropriate solution for every technological challenge.

Wayss \& Freytag Ingenieurbau AG is active worldwide in the field of tunnelling. On the international market, the company carries out rojects in which it distinguishes itself by its special know-how and excellent performance.
he scope of our activities ranges from mechanized and conventional tunnelling, the construction of sewage treatment plants and
 consulting, location analyses, utilization concepts and feasibility studies complete our range of services.

## Mechanized Tunnelling

In the past Wayss \& Freytag was significantly involved in the development of mechanized tunnelling techniques. For example, they nitiated the support of the tunnel face by means of a bentonite suspension and air-cushion. With the so-called "slurry shield" this technique was brought to operational maturity. Wayss \& Freytag is a pioneer of this technique and has in the meantime driven more han 150 km of tunnel using slurry shields. In addition, more than 80 km of tunnel were driven using earth pressure balance shields and 30 km using hard rock TBMs.
Conventional Tunnelling
The construction of tunnels using conventional construction methods has always been a challenge to every engineer. Here, the engineer's most important task is the evaluation of the geology and the selection of the right means of securing the excavation face . Wayss \& freytag already rose to this challenge in 1905 when building a railway tunnel using he conventional tunnelling method in Wasserburg/Inn in gompholite (Nagelfluh) and gravel.
The range of conventional tunnelling reaches from soft rock tunnelling (e. g. a metro tunnel in Munich gravel) and tunnelling in mpressed air (e. g. Ostbahnhof metro station in Munich in Tertiary formations below groundwater) to classic drill and blast drives (e. g. Rennsteig Tunnel on the A 71 motorway, which, with a length of 8 km , is the longest motorway tunnel in Germany)

Total Driven Tunnel Length (km):


## CONTENTS

4-5
$6-7$
Large-scale project „Emscher" Sewerage Tunnel, BA30 (BA = construction lot) ..... 8

Dad Cannstatt Tunne

uropagarten Tunnel, Frankfurt

Luise-Kiesselbach-Platz
Wehrhahnlinie (Wehrhahn Line) Lot 2
Connel Kö-Bogen. . . . " "Sylvensteinspeicher" Seepage Water Tunnel
Silberberg Tunnel.
.19
.20
Cologne North-South Light Railway, Southern Section .21
.
.22
Brandkopf / Lohmeberg Tunnels. .... . . . . . . .
.
New Coal-Fired Power Plant in Wilhelmshaven.
$24-25$
-.26

Stuttgart Metro, Line U6 Fasanenhof. .
Pipe Jacking under Leipzig Main Station
.27
. .28
Pipe Jacking under Leipzig Main Statio
. 28
Rennsteig Tunnel . . . .
Velbert-Langenberg Tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
31
(I) Belgium
iefkenshoek Rail Link
Diabolo Project
.32
. .33
.34
Schuman-Josaphat Tunne .33
.34
.35
此 United Kingdom
Crossrail Western Tunnels and Bond Street and Tottenham Court Road Stations, London .
Channel Tunnel Rail Link
(I) Ireland $\qquad$
Luxembourg
Grouft Tunnel. ..... 42
.43
$\stackrel{\text { O }}{=}$ Malaysia ..... 4-45

- The Netherlands
liuiskil Canal Crossing ..... 46
Hubertus Tunnel... ..... 48
- Austria
50
Hengsberg Tunnel
51
Roppen Tunnel

Lilienberg Tunne

$$
\begin{aligned}
& \text { Henndorf Bypass. } \\
& \text { Vienna Metro - U2/2 Taborstrasse . . . }
\end{aligned}
$$

e.

$$
\begin{aligned}
& \text { Venna Metro - U2/2 Taborstrasse . . . . } \\
& \text { Klaus Tunnel String 2nd Tubes Lots } 4+5
\end{aligned}
$$

Gleinalm Tunnel 2nd tube. . .ib . . . . . . . .

- Switzerland

immern Access Tunnel I . . . .
immern Access Tunnel
Tridel Tunnel. .
Uetliberg Tunne
Detliberg Tunnel
CERN Nuclear Research Centre, Geneva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
- 

Singapore
Singapore Metro, North-East Line, Contract C704. . . . . . . . . . . . . . . . . . . . . . . . . . .68-69
Project References

## Expertise in and around tunnelling

We offer you the customized solution for your tunnelling projects. From planning through work preparation, execution to operation and maintenance, we develop innovative solutions to suit the specific requirements of your projects.
The experienced teams in our Technical Department are at your disposal to provide optimal planning for your projects from the very beginning. Work preparation, material technology as well as individual monitoring throughout all phases of your project belong to our range of services. They comprise feasibility studies, risk analyses, design and consulting. Furthermore, we offer geotechnical
evaluations, expert advice, structural analyses and much more.
The experts in our Material Technology Department develop concrete and mortar with special characteristics for your project to meet your particular requirements. Besides this, our team supports you with concreting and concrete curing concepts as well as with quality assurance concepts.
The W\&F Tunnel Technology Department, our centre of expertise for equipment technology, offers customized solutions for equipment concepts for all aspects of mechanized tunnelling according to your requirements. Our services are based on the experience gained on over 300 km of tunnels, driven using tunnel boring machines (TBMs) operated in slurry shield, earth pressure balance (EPB) and hard rock mode.

Our services range from the rental of individual items such as small machines through the development of conceptual designs to the supply and operation of complex large-scale equipment for all geological requirements. On request we can also provide you with our trained and experienced staff to maintain the equipment during operation or with a complete tunnelling team, including the respective management staff.
For your project we can also provide you with separation plants (STP), mud treatment equipment (MTP), slurry circuits for the conveying of excavated material, batching plants, compressed air stations, container systems, booster stations and cooling water conveying of excavated material, batching plants, compressed air stations,
systems, tunnel ventilation, safety equipment as well as electrical plants.
With our experienced and reliable teams in Special Foundation Works we also offer experienced and sound competence in nearly all parts of Europe. Our range of services in the field of specialized civil engineering comprises diaphragm walls and sealing walls (excavation by crawler cranes and diaphragm wall grippers and cutters as temporary or permanent structures with adjusted joint and permanent anchors, soil nails and Micro-piles), soil injections in light soils and rock, ground freezing as well as planning and execution of turnkey excavation pits. execution of turnkey excavation pits.
We look forward to meeting your challenges!


Large-scale project „Emscher" Sewerage Tunnel, BA30 (BA = construction lot)

## Germany

## General Data:

Project
Emscher Sewerage Tunnel, construction lot (BA) 30 ( $\mathrm{BA}_{31}$, $\mathrm{BA}_{32}, \mathrm{BA}_{33}$ ) between Dortmund-Mengede and Bottrop Sewage Treatment Plant

Client:
Contractor:
Emschergenossenschaft
Wayss \& Freytag Ingenieurbau AG, Central, Tunnelling \& Specialized Civil Engineering/Special Foundation Engineering Divisions

Construction period:
Construction costs: $€_{420}$ millio

## Technical Data:

Project description: construction of 130 excavation pits, 115 shaft structures and approx. 47 km of sewerage tunnel in 117 individual drives with individual lengths of $<20 \mathrm{~m}$ to 1.150 m
Construction method: For excavation pits the diaphragm wall and bored pile construction methods.
Pipe jacking with DN 1600 , DN 1800, DN 2200, DN 2400 and DN 2800 with 9 full-face TBMs using both the EPB- and slurry method. railway lines, roads, dams, buildings and pipelines. Standard pipe length 4 m . Thickness of pipe walls and 39 cm .
Pipes consisting of acid-resistant concrete, some with additional special protection against corrosion.
Microtunnel DN 300 to DN 1200 . maximum allowed settlement 20 mm Construction of shaft structures with conventional climbing formwork and slipform method. Also executed in acid-resistant
concrete, partly with a special PE-HD lining as special protection against corrosion.

Geology: Emscher marl, sandy and silty clays, tunnel alignment entirely below the groundwater table with a water pressure of up to 3 bar above the pipe invert level.



## General Data:

Project:

Client:
Contractor:

## Stuttgart 2

PFA (section) 1.5, Lot 3 Long-distance route from Stuttgart Main Station to Bad Cannstatt DB Netz AG, Frankfurt/Main represented by DB Projektbau Stuttgart - Ulm GmbH

Construction period: 2 012-2018
Construction costs:
approx. $€ 285$ million

## Technical Data:

Project description: $\quad 5050 \mathrm{~m}$ single-track and 1050 m double-track long-distance railway tunnel; $A=70-220 \mathrm{~m}^{2}, 345 \mathrm{~m}$ single-track and 575 m double track $\mathrm{A}=20-40$ railway 790 m rescue tunnel; $A=20-40 \mathrm{~m}^{2}$, approx. 6om deep smoke extraction structure, 1 rescue shaft depth $=20 \mathrm{~m}$

Construction methods: Drill and blast method and tunnel excavator, reinforced inner lining partly with foil sealing Bored pile lining, shotcrete shafts, elevation grouting
Geology:


## Darmsheim Tunnel

Germany

## General Data:

## Project:

Client:
Contractor:
Construction period:
Construction costs:
Darmsheim Northern Bypass, L1182 Darmsheim Tunnel Federal Land of Baden -Württemberg represented by RP Stuttgart Wayss \& Freytag Ingenieurbau AG

## Technical Data:

Project description:
2015 to 2017
$€_{13.5}$ million

Project description: Two-lane road tunnel; Length $460 \mathrm{~m} ; \mathrm{A}=95-120 \mathrm{~m}^{2}$ Escape and safety tunnels $\mathrm{I}=328 \mathrm{~m}, \mathrm{~A}=13.5-18.3 \mathrm{~m}^{2}$
Construction method: Drill and blast
Geology: Upper shell limestone



## Europagarten Tunnel, Frankfurt

## General Data:

Project
Client:

Contracto
Construction period:
Construction costs:

## Technical Data:

Scope of work: Length $533 \mathrm{~m}, 395 \mathrm{~m}$ covered over section using the cut and cover method
Three tubes: outer tube for motor traffic inner tube for tram Ramps with clear width $6.50 / 7.90 / 6.50 \mathrm{~m}$ and clear width of 5.71 m buildings including operational building and road works. operational and traffic installations

Construction method: Cavern with diaphragm walls or bored, under water concrete with rear anchoring, Top-Down method

## Luise-Kiesselbach-Platz

Germany

## General Data:

Project:
Mittlerer Ring Süd-West (MRSW)(Middle Ring South-West)Tunnel -Luise-Kiesselbach-Platz
Client:
Landeshauptstadt München Baureferat (Building Authority of $F$ Landeshauptstadt Mûnchen Baureferat (Build
ederal Land Capital of Munich) Abteilungen (Division) ${ }_{12}$, T1B, MSE

Contractor:
Construction period:
Construction costs:
Aug 2009 - Dec 2015, opening for traffic in July 2015

## Technical Data

Project description: The MRSW- Luise-Kiesselbach-Platz Tunnel Project is the third section of an infrastructure project at the Middle King in Munich ratified by a public referendum in 1996.
The project comprises the construction of an approx. 2800 m long inner-city tunnel, in bored pile top down method and cut and cover construction method as well as canal and road works.

All works had to be carried out during ongoing traffic on the surface at all times (approx. 150.000 cars day) as well as for all utilities in operation and thus required many traffic diversions and numerous construction sections.

The heart of the tunnel is considered to be the 2 -storey construction of the intersection between motorway connection A95 and Middle Ring to the East and North.
Construction method: Bored pile top-down method approx. $\mathbf{2 . 0 0 0} \mathrm{m}$, cut and cover construction method approx. 800 m
Geology: quaternary gravel


## Widderstall Tunnel

Germany
General Data:

Project:

Client:
Contractor:
Construction period:
Construction costs:

NBS (new construction) Stuttgart-Augsburg Section Wendlingen-UIm PFA (section) 2.3 Albhöhe; VE 230-1 Widderstall Tunnel

DB Projekt Stuttgart-Ulm GmbH
Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture 2013 to 2016
approx. $€ 43.7$ million

## Technical Data:

Project description: $\quad 962 \mathrm{~m}$ long double-track railway tunnel; $440,000 \mathrm{~m}^{3}$ excavated material with tunnel lining (shotcrete and netting); geophysical and direct soil investigation of the karst-prone rock, material processing and backfilling; rain retention and reservoir; construction of a new parking and toilet facility at "Albhöhe"
Construction method: Cut and cover construction method in arch cross-section
Geology:


Wehrhahnlinie (Wehrhahn Line)Lot 2 Germany

## General Data:

Project

Landeshauptstadt (regional federal land capital of) Düsseldorf, Amt für Verkehrsmanagement (authority for traffic management)

Construction period:
Construction costs:
2007 to 2016
$€_{74}$ million

## Technical Data

Scope of work:
Total length 120 m , approx. 75 m drive under historical Kaufhof Building
Connection to station Heinrich-Heine-Allee , tunnel with segmental lining Lot 1

Construction method:
Start- and reception cavern with diphragm walls, navigated horizontal drilling $\mathrm{R}=350 \mathrm{~m}$ for ground freezing, excavation with tunnel excavator in two segments with shortcrete


Kö-Bogen Tunne Deutschland

General Data:

Project:
Client:

Contractor:
onstruction period
Construction costs:

Technical Data
Scope of work:

## Tunnel Kö-Bogen

Landeshauptstadt (regional federal land capital of) Düsseldorf, Amt für Verkehrsmanagement (authority for traffic management) Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture
2010 to 2016
$€_{114 \text { million }}$

## Construction in two Lots

Lot 1: approx. 300 m South-North-Tunnel with 850 m ramp and western junction
Lot 2: approx. 675 m North-South-Tunnel with three ramps approx. 85 m ; connection to various subterranean garages, ground levels 7 m to $14 \mathrm{~m} ; 36,000 \mathrm{~m}^{3}$ concrete; 120,000 $\mathrm{m}^{3}$ excavatio

Construction of the new "Sylvensteinspeicher" Seepage Water Tunnel
Germany

## General Data

Project: Sylvenstein Dam BA (construction lot) 3, construction of a new seepage water tunnel, Lots 1-3
Client: Wasserwirtschaftsamt (water authority) Weilheim for the Free State of Bavaria
Contractor: Wayss \& Freytag Ingenieurbau AG
Construction period:
Construction costs: March 2013 to July 2014
approx. $\epsilon_{5.6 \text { million }}$


Technical Data:
Project description: Lot 1: Driving of access tunnel L approx. 80 m and start cavern V approx. $1,000 \mathrm{~m}^{3}$, construction of 2 pressure partitions(walls), extension of access tunnel incl. tunnel portal, infrastructure provisions
Construction method:
drill and blast, SCL inner lining
Geology:
mainly dolomite
Project description: Lot 2: driving of target shaft $\mathrm{D}=7 \mathrm{~m}$ T approx. 40 m and target cavern L approx. 15 m
Construction method: drill and blast, SCL inner lining
Geology:
mainly dolomite


Silberberg Tunnel
Germany
General Data:
Project:
German Unity Transport Project VDE8, Upgraded and New Railway Lines between Nuremberg and Berlin (Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway line) Silberberg Tunnel
Client:
Contractor:
Construction period:
Wayss \& Freytag Ingenieurbau AG as commercial leader of a joint venture

Construction costs:
,

Technical Data:
Scope of work:
7,391 m long double-track railway tunnel, excavated area: $120 \mathrm{~m}^{2}-150 \mathrm{~m}^{2} ; 2$ intermediate tunnels serving as points of attack;
rescue shaft, depth: 21 m
Construction method: Drill and blast method and tunnel excavator, waterproofing and inner lining

Geology:
Thuringian slate mountains, clay/silt rock


Finne Tunnel
Germany
General Data:
Project:

Client:

## Contractor:

Construction period
Construction costs:

Finne Tunnel, part of new Erfurt-Leipzig-Halle railway line, single-track railway tunnel

DB Netz AG [German rail company], represented by DB Projekt Bau GmbH, Projektzentrum Leipzig
Wayss \& Freytag Ingenieurbau AG as technical leader of a joint leader
December 2006 to September 2012
$€_{270}$ million

## Technical Data:

Scope of work: $\quad 2$ single-track railway tunnels, length: $2 \times 6,822 \mathrm{~m}$, internal diameter: 9.60 m ; 2 cut and cover tunnel sections, each approximately 75 m long; 13 cross-passages; tunnels for technical purposes, railway sections in a cutting and on an embankment, lengths: $1,000 \mathrm{~m}$ and 340 m ; construction of sonic boom structure at all 4 tunnel portals in order to avoid the sonic boom effect, length: 75 m

## Construction method:

TBM tun after $1,500 \mathrm{~m}$ conversion of TBMs from slury shield mode to hard rock mode. after $1,500 \mathrm{~m}$ conversion of TBMs from slurry shield mode to hard rock mode;
segmental lining, thickness of segments: 45 cm ; lowering of groundwater table by means of deep wells during tunnelling in open mode (water pressure 6.1 bar) Buntsandstein (variegated sandstone), fault zone with Keuper sandstone formations

Cologne North-South Light Railway, Southern Section Germany
General Data:
Project:
Cologne North-South Light Railway, Southern Section, single-track metro tunnel
Client: Kölner Verkehrsbetriebe AG, Cologne

## Contractor:

Construction period:
Sys \& freytag ingenieurbau AG in a joint vent

Construction costs: November 2003 to February 2014

## Technical Data:

Scope of work: $\quad 3,260 \mathrm{~m}$ of light railway line with 2 single-track tunnels, total length: $5,400 \mathrm{~m}$ internal diameter: $7.30 \mathrm{~m} ; 7$ stations; 1 crossover; 1 weaving section
Construction method: TBM tunnelling using 2 Mixshields (slurry shields), shield diameter: 8.39 m , segmental lining; use of complex special construction methods, e.g. ground freezing, soil stabilisation (jet grouting and compaction grouting), groundwater lowering, compressed air tunnelling using ground freezing methods and pipe umbrella support system
Geology: Quaternary sands/gravels


## Brandkopf/Lohmeberg Tunnels

Germany
General Data:

Client:
Contractor:
Construction period:
Construction costs:

Wayss \& Freytag Ingenieurbau AG as commercial leader of a joint venture August 2009 to March 2012
$€ 80$ million

## Technical Data:

Scope of Work


New Central Services Tunnel for Brunsbüttel Lock Germany

## General Data:

Project:
New central services tunnel for Brunsbüttel lock, tunnel for service line
Client: Wasser- und Schifffahrtsamt Brunsbüttel [Water and Shipping Authority]
Contractor: Wayss \& Freytag Ingenieurbau AG
Construction period:
March 2009 to September 2011
Construction costs:
$€_{22}$ million

## Technical Data:

Scope of work:
Construction of a services tunnel (called "Mitteldüker") under the existing double locks at the western end of the Kiel Canal without disrupting lock operations, length: approx. 450 m , clear internal diameter: 2.20 m , tunnel invert approx. 35 m below ground level
Construction method: Pipe jacking using an AVN 2000 machine, construction of shafts using the diaphragm wall method

Geology:
Gravelly sand with stones


New Coal-Fired Power Plant in Wilhelmshaven, Cooling Water Pipelines, Lot C121, Germany

General Data:
Project:

Client:
Contractor:

Construction period
Construction costs:

New coal-fired power plant in Wilhelmshave cooling water pipelines, Lot C121

GDF SUEZ Energie Deutschland AG Wayss \& Freytag Ingenieurbau AG in a joint venture

December 2009-August 2011
$€_{36}$ million


## Technical Data:

 Scope of work:4 cooling water pipelines DN 3400 with a length of 300 m each;
1 fish return pipeline DN 1200 with a length of 300 m ;
start shaft: $30 \mathrm{~m} \times 25 \mathrm{~m} \times 15 \mathrm{~m}$, diaphragm walls with anchored underwater concrete slab; target shaft: $45 \mathrm{~m} \times 11 \mathrm{~m} \times 15 \mathrm{~m}$, steel girder shoring with underwater concrete slab and pre-installed lean concrete block,
dyke crossing structure: 5 circular cells of secant bored piles (internal diameter approx. 7 m ), a tunnel drive through each circular cell
Construction method: Pipe jacking using 2 slurry-supported tunnel boring machines, external diameter: 4.1 m
Jacking pipes:
Composite pipes DN 3400 , consisting of a reinforced concrete pipe with an integrated HDPE pipe line
Geology:

Katzenberg Tunne
Germany
General Data:


DB Netz AG [German rail company] represented by DB Projektbau GmbH Projektzentrum Karlsruhe

Technical Data:
Scope of work:
Twin-bore railway tunnel, each tube 9.4 km long, of which $8,984 \mathrm{~m}$ were driven using a TBM, internal diameter: $9.60 \mathrm{~m} ; 2$ cut and cover sections, lengths: 286 m and 115 m ; 19 cross-passages ( 18 crosspassages constructed using mining techniques, 1 cross-passage within the sonic boom structures), 2 ventiation shafts, 67 mdeep , water portals to avoid the sonis boomeffect boom effect

Construction method: TBM tunnelling using 2 EPB shields
shield diameter 11.12 m
in closed mode
segmental lining, 60 cm thick
Tertiary claystone, marlstone, limestone and sandstone


Munich Metro, Line 3 North, Section 2 Germany

General Data:
Project: Munich Metro, Line 3 North, Section 2 single-track metro
Client:
Landeshauptstadt München, Baureferat U-Bahn [State Capital of Munich, Building Division - Underground Railway]

Contractor:
Construction period: Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture September 2004 to February 2010

Construction costs: $€ 81$ million

## Technical Data

scope of work:
2 single-track metro tunnels, total length: 2,410 m, internal diameter: 6.30 m ; construction of Moosach and Moosacher St.-Martins-Platz Stations
Construction method:
TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 7.34 m , segmental lining, construction of metro stations using the top-down method
Geology: Gravel, clay, silt


Stuttgart Metro, Line U6 Fasanenhof Germany

## General Data:

Project:
Client:
Contractor:
Construction period: U6 metro link to Fasanenhof, double-track tunne , as technical leader of a joint venture

Construction costs:

Technical Data:
scope of work: Double-track mined tunnel, length: 380 m , excavated cross section: $90 \mathrm{~m}^{2} ; 852 \mathrm{~m}$ constructed using the cut and cover method
Construction method:
Sprayed concrete lining (SCL) method with tunnel excavator: unnelling under a high rise building protected by a pipe umbrella support system, under a four-lane federal road and an industrial building with a shallow overburden


## Dortmund Ostentor Light Railway

Germany

## General Data:

Project Dortmund Ostentor Light Railway Line III, Contract Section S10.1, 2nd Stag
Stadt Dortmund, Stadtbahnbauamt Stadt Dortmund, Stadtbahnbauamt
[City of Dortmund, Light Rail Construction Authority]

Contractor
Construction period: Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture

Construction costs: March 2002 to December 2005

## Technical Data

Scope of work: Start shaft
600 m single-track cross-section 200 m double-track cross-section 70 m enlargement section 30 m branch-off section, three-bay 100 m station tube
80 m station section, three-bay
diameter: 15 m , depth: 22 m excavated area $=36 \mathrm{~m}^{2}$ excavated area $=70 \mathrm{~m}^{2}$ excavated area $=36 \mathrm{~m}^{2}-60 \mathrm{~m}$ xcavated area $=185 \mathrm{~m}^{2}$ xcavated area $=62 \mathrm{~m}^{2}$ excavated area $=138 \mathrm{~m}^{2}$

Construction method: upport system cut and cover method:
western and eastern railhead of the stations with accesse 100 m closed ramp as a double-track rectangular cross-section; 120 m open ramp as a retained cut

Marl stone, weathering zone of sandy, gravelly and silty clays

Pipe Jacking under Leipzig Main Station Germany
General Data:
Project:
Pipe jacking under Leipzig Main Statio
Client:

Contractor:
Construction period
City Tunnel Leipzig Joint Venture, consisting of Wayss \& Freytag Ingenieurbau AG and Ed. Züblin AG October 2006 to July 200

## Technical Data

Scope of work: Construction of two pilot tunnels in the course of the construction of Leipzig City Tunnel, Section C, length: 110 m and 145 m , internal diameter: 2.40 m
Construction method: Pipe jacking with a slurry-supported tunnel face
AVN 2000 tunnelling machine, external diameter: $2,400 \mathrm{~mm}$; enlarged to $3,000 \mathrm{~mm}$;
wall thickness of jacking pipes: 30 cm , standard length: 3 m ; max. settlement 3 mm
Geology: Sand, gravel



## Liefkenshoek Rail Link

Antwerp, Belgium

## General Data:

Project: Liefkenshoek Rail Link, double-track railway tunnel
Client:
Contractor:
Wayss \& Freytag Ingenieurbau AG
in a joint venture
Construction period:
November 2008 to mid-2013
Construction costs:
$€ 693$ million

## Technical Data:

Scope of work:
Construction of a double-track railway line, length: 16.2 km ; construction of 4.8 km of embankment fills and 4.3 km of open and covered cuts;
construction of 2 single-track TBM tunnels, length: $2 \times 6 \mathrm{~km}$, internal diameter: 7.30 m ;
refurbishment of existing Beveren-Tunnel, length: 1.2 km ; various civil engineering structures

Construction method:
Tunne: TBM tunnelling using 2 Hydroshields (slurry shields), shield diameter: 8.32 m ,
segmental lining
Geology:


Diabolo Project Belgium

## General Data:

Project:
Client:

Contractor:
Construction period:
Construction costs:

Diabolo Project, single-track railway tunnel Northern Diabolo nv (PPP company for the railway tunnel) Via-Zaventem nv (PPP company for the road construction part) Wayss \& Freytag Ingenieurbau AG in a joint venture

October 2007 to February 2012
$€_{333}$ million

## Technical Data:

## Conversion of the dead-end station at Zaventem Airport,

 Brussels, into a through stationconnection of the station to the new high-speed railway line from Brussels to Antwerp by means of approx. $5,600 \mathrm{~m}$ of tunnel: 2 TBM-driven tunnels, length: approx. 1.1 km each, internal diameter 7.30 m
approx. 1.1 km of tunnel built using the top-down method approx. 2.3 km of cut and cover tunnel
construction of additional accesses and exits for the E19 motorway; refurbishment of an existing motorway bridge and addition of a new bridge for cyclists; construction of a fly-over

Construction method:
TBM tunnelling using a Mixshield (slurry shield), shield diameter: 8.27 m , segmental lining, 25 cm thick top-down method; cut and cover method
Sand with beds of sandstone in the rock area


Schuman-Josaphat Tunnel Belgium

General Data:
Project:
Schuman-Josaphat Tunnel, double-track railway tunnel
Client: Departement Mobiliteit en Vervoer [Belgian Department of Transport] Wayss \& Freytag Ingenieurbau AG in a joint venture
Contractor: October 2008 to June 2015

## Construction perio

$€ 217$ million

## Technical Data:

Scope of work: Structural modification of Schuman train and metro station; construction of double-track Schuman-Josaphat Tunnel, box section, length: $1,400 \mathrm{~m}$ width: approx. 10.85 m , height: 6.86 m ; pipe jacking to build a pipe umbrella support system, lengths of pipe jacking:
703 m with an internal diameter of 3.00 m
550 m with an internal diameter of $1,40 \mathrm{~m}$
Construction method: Mining techniques for most of the tunnel, partly under the protection of manually constructed underpinnings, partly by a pipe umbrella support system constructed using the pipe jacking method
pipe jacking using an AVN 1800 machine
Geology: Sand with beds of sandstone



Antwerp North-South Link (ASDAM)

## Belgium

General Data:

## Technical Data:

 structural modification of the existing accesses; construction of a passageway under the main railway station; 3 emergency exit 2 cross-passages

Crossrail Western Tunnels and Bond Street and
Tottenham Court Road Stations, London

General Data:

Project:
Crossrail Western Tunnels and Bond Street and Tottenham Court Road Stations. single-track railway

Client: Contractor:

Construction period
Construction costs:

Crossrail Limited, London, UK Wayss \& Freytag Ingenieurbau AG in a joint venture
February 2011 to August 2018
$€_{1,191}$ million

Technical Data:

Scope of work:
Contract $\mathrm{C}_{300}$ :

## Contract C410

Contract C435:
Construction method: Construction of the tunnels using 2 EPB shields, shield diameter: 7.10 m method; construction of Fisher Street Shaft and Crossover using NATM techniques with a sprayed concrete 6 cross-passages; construction of Fisher Street Shaft and Crossover
20 sprayed concrete lining (SCI) inner lining
London Clay
Construction of 2 parallel, single track railway tunnels, length: 5.9 km Construction of Bond Street and Tottenham Court Stations




Corrib Pipeline Tunne Ireland

General Data:
Project:
Corrib Pipeline Tunnel,
lient:
Contractor:
Construction period: Shell E\&P Ireland Limited, Dublin, Ireland in a joint ventur

Construction costs: $€_{125}$ million

## Technical Data:

Scope of work:
Tunnel for a gas pipeline, length: $4,900 \mathrm{~m}$, internal diameter: 3.50 m ;
installation of the gas pipeline (diameter 50 cm ), 2 water pipelines (diameter 25 cm ) and several control cables into the tunnel using the floating method; complete grout backfilling of the tunnel after installation of he pipelines and cables


Channel Tunnel Rail Link

## United Kingdom

## General Data:

Project:
Channel Tunnel Rail Link, Contract C250,
single-track railway tunnel
Client:
Contractor:
Union Railways (North) Ltd., London, UK

Construction period:
Wayss \& Freytag Ingenieurbau AG
in a joint venture

Construction costs: $€_{217}$ million

## Technical Data:

Scope of work: $\quad 2$ parallel railway tunnels, length: 5.3 km each, internal diameter: 7.15 m ; 7 cross-passages;

Construction method: TBM tunnelling using 2 EPB shields, shield diameter: 8.15 m ; steel fibre reinforced segmental lining; both tunnels driven simultaneously from a retained cut structure
Geology: Sand, London Clay, silt, gravel

TBM tunnelling using a Hydroshield (slurry shield),
shield diameter: 4.24 m ;
steel fibre reinforced segmental lining, wall thickness 25 cm
Quaternary sands, gravels, gneiss


Stafelter Tunnel Luxembourg

## General Data

Project:
Stafelter Berg Tunnel
twin-tube, two-lane motorway tunnel
Client: Grand-Duché de Luxembourg - Ministère des Travaux Publics [Grand Duchy of Luxembourg - Ministry of Public Works] represented by Administration des Ponts et Chaussées, Luxembourg [Bridge and Road Department

Contractor: Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:
September 2008 to August 2012
Construction costs:
$€_{100}$ million

## Technical Data

Scope of work: $\quad 2$ double-lane motorway tunnels, each with a length of $1,850 \mathrm{~m}$ (excaved mining techniques and 200 m using the cut and cover method

Construction method: Drill and blast method in combination with tunnel excavator, construction of a pipe umbrella support system in some areas with shallow soil cover
Geology: Luxembourg Sandstone


## Grouft Tunnel

Luxembourg

## General Data:

Project:
Client:

Contractor:

Construction period:
Construction costs:

## Technical Data:

Scope of work:
1 double-lane tunnel, 3 km , excavated cross-section: 96 m 1 triple-lane tunnel, 2.9 km , excavated cross-section: 174 m 1 cavern with ventilation shaft; accessible by vehicles:

Drill and blast method in combination with tunn excavator, sprayed concrete lining (SCL) method Marl, sandstone, Keuper


SMART Tunnel
Malaysia
General Data: Project:

Client:

Contractor:
Construction period:
Construction costs:

## Technical Data

Scope of work:
Construction method:
ombined flood relief and road tunnel, length: 5,230 m, internal diameter: 11.83 m
TBM tunnelling using a Mixshield (slurry shield),
shield diameter: 13.21 m ,
shegmental lining
Geology:

Stormwater Management and Road Tunnel (SMART) Project, flood relief and road tunnel in the city centre of Kuala Lumpur
MMC Eng. Group Bhd./Gamuda Eng. Sdn. Joint Venture Kuala Lumpur, Malaysia
Wayss \& Freytag Ingenieurbau AG
January 2003 to January 2006
$€ 83$ million


## Sluiskil Canal Crossing

The Netherlands

## General Data:

Project:
Client:
contractor: twin-bore road tunnel under the Ghent-Terneuzen Canal
Province of Zeeland [Provincie Zeeland], represented by BV Kanaal-kruising Sluiskil

Wayss \& Freytag Ingenieurbau AG in a joint venture
Construction period: October 2010 to May 2015
Construction costs:
$€ 233$ million

## Technical Data

paralleltunnel tubes, length: 1.15 km each, internal diameter. 10.10 m
2 ramp structures serving as start and/or target shafts;
2 intersections - East and West - consisting of bridge structures with 2 roundabouts each
Construction method: TBM tunnelling using a Hydroshield (slurry shield),
shield diameter: 11.32 m ,
reinforced concrete segmental lining, wall thickness: 45 cm
Geology:
Sand, silt, Boom Clay, sand containing glauconite

## Ems-Dollard Crossing

The Netherlands

## General Data:

Project:

Client:
Contractor:
Construction perio
Construction costs:

Ems-Dollard Crossing between Germany and the Netherlands, tunnel for a gas pipeline Nederlandse Gasunie Wayss \& Freytag Ingenieurbau AG in a joint venture
June 2008 to September 2010
€ 45.7 million

## Technical Data:



Hubertus Tunnel
The Netherlands
General Data:
Project:

## Hubertus Tunnel,

 road tunnelClient:

Contractor: the Netherlands

Construction period: September 2004 to September 2008
Construction costs: $\quad € 109$ million

## Technical Data:

2 double-lane tunnels, each $1,490 \mathrm{~m}$ long, internal diameter: 9.40 m ; 2 ramp structures; 5 cross-passages
Construction method: TBM tunnelling using a Mixshield (slurry shield), external diameter of TBM: 10.50 m
reinforced concrete segmental lining
Geology:
Silty fine sands to medium dense beach sands


Westerschelde Tunnel
The Netherlands
General Data:
Project:
Client:

Contractor:
Construction period
Construction costs:
Westerschelde Tunnel, road tunnel
Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijskwaterstaat [Dutch Ministry of Transport, Public Works and Water Management] Wayss \& Freytag Ingenieurbau AG in a joint venture
January 1997 to March 2003
$€ 690$ million

Technical Data:
Scope of work:

## 2 parallel tunnel tubes,

Length: $2 \times 6,600 \mathrm{~m}$,
Internal diameter: 10.10 m
Ramp structures, toll stations and road connections including various civil engineering structures

Construction method: , shield diameter: 11.34 m segmental lining
Geology:
Sand, Boom Clay


Koralm Tunnel KAT
Austria
General Data:
Project:
Koralm Railway Line between Graz and Klagenfurt Koralm Tunnel, Contract Section KAT 1-km 37+700-km 43-150-B 1961
Client: ÖBB Infrastruktur Bau AG, Graz [National railway of Austria]

Contractor:
Construction period: $\quad 2009$ to 2013 Wayss \& Freytag Ingenieurbau AGas technical leader of a joint venture

Construction costs: $\quad$ € 90 million

## Technical Data:

## Scope of work:

Two single-track railway tunnels, each $1,961 \mathrm{~m}$ long, excavated area: $65 \mathrm{~m}^{2}-80 \mathrm{~m}^{2}$ 280 m of double-track tunnel tubes with a partition wall constructed by the cut and cover method; approx. 3 km-long open-cut railway line including earthworks and civil engineering works (flyovers, wildlife bridges, noise barriers); technical building including an emergency basin and retaining walls at the tunnel portal


Construction method: Drill and blast method and tunnel excavator
Geology: $\quad \begin{aligned} & \text { Neogene (Miocene to Quaternary), sediments (loose rock - silt - sand) overlying } \\ & \text { poorly consolidated rock (siltstone and sandstone) }\end{aligned}$ poorly consolidated rock (siltstone and sandstone)


Hengsberg Tunnel
Austria


## General Data:

Project: Koralmbahn (railway) Graz-Klagenfurt B 1581
Lot 3 - Hengsberg Tunnel,
Client: ÖBB Infrastruktur Bau AG
Contractor:
Construction period
Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture

Technical Data:
Project description:
ouble-track railway tunnel $\mathrm{KL=1,695} \mathrm{~m}$, closed construction method $\mathrm{L}=1035 \mathrm{~m}, \mathrm{~A}=110-125 \mathrm{~m}^{2}$, cut and cover method L=400m, top-down ethod $\mathrm{L}=210 \mathrm{~m}, 3$ emergensy exits Open land section, $\mathrm{L}=5,898 \mathrm{~m}$, retentions, draikage works, noise protection, accompanying paths, etention areas
Objects:
1 underpass structure, 1 stormwater bridge
Construction method: closed construction method: combination of tunnel excavator and drill and blast, cut and cover and top-down method with separate bored pile sheeting Quaternary: Sand, gravel; Neogene: sandstone, silt / clay/ marl- rock, silt


Lilienberg Tunnel
Austria
General Data:
Project:

Contractor
Construction period:
Construction costs:

Volkermarkt Bypass, two-lane road tunnel Land Kärnten, Abteilung 17 - Brücken und Tunnels [State of Carinthia, Division 17 - Bridges and Tunnels] Wayss \& Freytag Ingenieurbau AG in a joint venture
2007 to 2009
€ 23 million


## Technical Data:

Project description: two-lane road tunnel, $\mathrm{L}=1,100 \mathrm{~m}$,
$A=85 \mathrm{~m}^{2}, 1$ breakdown bay, 2 escape tunnels $\mathrm{L}=600 \mathrm{~m}, \mathrm{~A}=25 \mathrm{~m}^{2}$
Construction method: combination of tunnel excavator and drill and blast
Geology: Phyllite

Roppen Tunnel
Austria
General Data:
Project:
Roppen Tunnel, Second Tube
Client:
Contractor:

Construction period:
Construction costs:
2006 to 20

## Technical Data

## Scope of work:

Length: 5.1 km , excavated cross-section: $80 \mathrm{~m}^{2}-95 \mathrm{~m}^{2}$ 7 emergency lay-bys, 23 cross-passages
Construction method: Sprayed concrete lining (SCL) method with drill and blast excavation
Geology: Dolomite (dolomia principale)

Project:
Client:
Contractor:
Construction period:
Construction costs: Land Salzburg, Landesbaudirektion [State of Salzburg, State Building Authority] Wayss \& Freytag Ingenieurbau AG as technical leader of a joint venture

## Technical Data

Scope of work: 2006 to 2009
$€_{38}$ million

Length: 2.2 km , excavated cross-section: $80 \mathrm{~m}^{2}-100 \mathrm{~m}^{2}$; 2 parking bays, area: $125 \mathrm{~m}^{2}$;
6 cross-passages to an existing exploration tunnel; ventilation shaft, diameter: 4 m , depth: 38 m ; service buildings and emergency exit shafts
Construction method:
Drill and blast method in combination with tunnel excavator, length: 1.4 km ;
cut and cover method: 732 m
Geology:


Vienna Metro - U2/2 Taborstrasse Austria

General Data:
Project:
client:
Contractor:

Construction period:
Construction costs:

## Technical Data:

Scope of work: Length: $2 \times 1.1 \mathrm{~km}$, excavated cross-section: $39 \mathrm{~m}^{2}-44 \mathrm{~m}^{2}$. 2 station tubes, excavated cross-section: $65 \mathrm{~m}^{2}$. access and supply shafts
Construction method:
Tunnel excavator:
advance under the protection of jet-grouted canopies and jet-grouted bulkhead Dewatering:
270 wells up to a depth of 40 m , electronic monitoring and control system, maximum output $2851 / \mathrm{s}$, total output 25 million cubic metres of ground water Tertiary silts and sands, groundwater


Klaus Tunnel String 2nd Tubes Lots 4+5
Austria
General Data:
Project:
Ag Phyrn Motorway full extension of and tube Lot 5 "Sperring" and „Falkenstein" Tunnel, Lot 4 „Klauser" and „Traunfried" Tunnel
Client: Asfinag Baumanagement GmbH
Contractor:
Wayss \& Freytag Ingenieurbau AG as commercial leader of a Joint venture
Construction period:
2014 to 2017
Construction costs:
$€_{34.99+31.29}$ million

## Technical Data:

Project description: double-lane motorway tunnel Lot 5 ", Sperring " Tunnel $\mathrm{L}=2,894 \mathrm{~m}$, enlargement to full cross section, face/floor, $A=30-60 \mathrm{~m}^{2}$ 10 cross-passages, 2 breakdown bays, Falkenstein tunnel $L=752 \mathrm{~m}, A=70-80 \mathrm{~m}^{2} 2$ cross-passage Lot 4 Klauser tunnel $2,166 \mathrm{~m}$ of which $1,900 \mathrm{~m}$ to be enlarged to full cross-section, face/floor $A=30-60 \mathrm{~m}^{2}, \mathrm{~L}=160 \mathrm{~m}$ complete excavation $\mathrm{A}=75-85 \mathrm{~m}^{2}, 8$ cross-passages, 2 breakdow bays, Traunfried Tunnel $\mathrm{L}=462 \mathrm{~m}, \mathrm{~A}=75-85 \mathrm{~m}^{2}$ 2 service buildings and water tank for firefighting purposes

Construction method: grades of weathering, slightly weathered to bedded Wetterstein dolomite, loose soil layers (unconsolidated colluvium)


## Gleinalm Tunnel 2nd tube

Austria
Allgemeine Daten:
Project:
Phyrn motorway full extension 2nd tube "Gleinalm" Tunne

Client:
Contractor:
Construction period:
Construction costs: aumanagement Gmb

Ways \& freytag Ingenieurbau AG of a joint venture
2013 to 2017
€ 99.4 million

## Technical Data:

Project description
double-lane motorway tunnel $\mathrm{L}=8,047 \mathrm{~m}, \mathrm{~A}=80-90 \mathrm{~m}^{2}$ 34 cross-passages $L=840 \mathrm{~mA}=15-45 \mathrm{~m}^{2}, 8$ breakdown and 7 ventilation bays $\mathrm{A}=110+120 \mathrm{~m}^{2}, 2$ portal galleries and ventilation towers

Construction method: drill and blast
Geology:
Gneiss, amphibolite as well as slate in massive plate-like to slate-like form



Koralm Tunnel Paierdorf Ventilation Structure
Austria
General Data:

Client:
Contractor:
Construction period:
Construction costs:

## Technical Data:

Project description: construction of a ventilation building consisting of North tube access cavern $\mathrm{L}=18 \mathrm{~m}$, $A=120 \mathrm{~m}^{2}$ and enlargement area $\mathrm{L}=90 \mathrm{~m}, \mathrm{~A}=114 \mathrm{~m}^{2}$, ventilation tunnel North $\mathrm{L}=93 \mathrm{~m}$ gradient $14^{\circ}, \mathrm{A}=36 \mathrm{~m}^{2}$, Enlargement of south tube from existing tube to complete section $\mathrm{L}=250 \mathrm{~m}$, ventilation shaft interior construction $\mathrm{H}=117 \mathrm{~m}$, maintenance of exploration structure during the construction period.
Construction method: drill and blast method and tunnel excavator, SCL inner lining, slip-form construction
Geology: Neogene (Miocene) consisting of coarse clay, clayey, sandy, sand silty



## Eppenberg Tunnel

Switzerland
General Data:
Project:
Eppenberg Tunnel Project, Part 1 , Tunnel in mining technique (conventional method) " Railway tunnel, double track Four-track extension between Aarau and Olten
Client: SBB Infrastruktur

Contractor:
Construction period:
Wayss \& Freytag Ingenieurbau AG in a joint venture

Construction costs:
July 2015 to July 2019

## Technical Data

Project description:
1 double-track railway tunnel, total length $2,613 \mathrm{~m}$, of which a first part of approx. 80 m is driven in mining technique, 1,820 m in hard rock with TBM and 713 m in soft rock Inner diameter tunnel 11.19 m , drilling diameter $12,79 \mathrm{~m}$ 3 rescue and escape tunnels with the respective shafts As well as 5 bays for technical purposes in the tunnel

Construction method: TBM-driven tunnel with convertible TBM in hard rock as well as in soft rock(slurry mode), shield diameter 12.75 m - double lining with tunnel segments as outer lining and in-situ concrete lining as inner lining with external sealing with a thickness of 30 cm each. The rescue tunnels are constructed in mining technique

Geology: Effingen beds (claystone partly cemented) lower freshwater Molass Gravel in soft rock sections

## Gemeinschaftskraftwerk Inn (GKI)

## (Joint Power Station at the River Inn)

Austria

## General Data:

Project:
Client:
Contractor
Construction period:
Gemeinschaftskraftwerk Inn (GKI) Prutz/Ried Wayss \& Freytag Ingenieurbau AG, Southern Division in a joint venture (GKI Prutz/Ried JV)

Construction costs:

Technical Data
Project description:
ection: power descent, inclined shaft approx. 400 m gradient less than $31 \%$

Excavation and securing works, $T=100 \mathrm{~m}, \varnothing_{15} \mathrm{~m}$
Concrete works vertical shaft, inner $\varnothing_{14} \mathrm{~m}$
Return Drive (in opposite direction) approx. 1,000 m Concrete works return drive inner lining bottom and roof Access tunnel, caverns

Construction method:
Drill and blast method and tunnel excavator
Geology:
Dark limestone phyllite


Weinberg Tunnel, Sections 3.1 and 3.2 Switzerland

## General Data:

Project:
Weinberg Tunnel, Sections 3.1 and 3.2, Zurich, as part of the Zurich Main Station-Altstetten-Oerlikon Diameter Line Schweizerische Bundesbahnen SBB [Swiss Federal Railways] represented by Infrastruktur - Projekt Management Durchmesserlinie

Contractor: $\quad$ Wayss \& Freytag Ingenieurbau AG in a joint venture
Construction period: September 2007 to May 2014
Construction costs:
$€_{246}$ million


## Technical Data:

Scope of work:
Section 3.1: Tunnelling under the southern part of Zurich Main Station and construction of a shaft in front of the southern part, ea: approx. $36 \mathrm{~m}^{2}$ ) and 390 running metres of $17 \mathrm{~m}^{2}$ ) as auxiliary tunnels for construction work using the topdown method under the southern part

Section 3.2: Double-track railway tunnel (main tunnel) and parallel escape and rescue tunnel, total length of main tunnel: $4,537 \mathrm{~m}$, of which $4,382 \mathrm{~m}$ are shield-driven, internal diameter: 9.74 m , length of escape and rescue tunnel: $4,460 \mathrm{~m}$, internal diameter: $4.55 \mathrm{~m} ; 8$ cross-passages; 2 emergency exits; 105 m of conventional tunnelling between the TBM launching chamber and the cut and cover tunnel in Oerlikon; Brunnenhof start
shaft (diameter: approx. 23 m , depth approx. 37 m ); 8 recesses for technical equipment inside the tunnel

Construction method:
Section 3.1: Auxiliary tunnels: tunnel excavator with pipe and spile canopy support systems
Section 3.2: Main tunnel: TBM tunnelling using a convertible TBM, operated both in hard rock mode ( $4,105 \mathrm{~m}$ ) and in slurry mode ( 277 m ), shield diameter: $11,23 \mathrm{~m}$;
double lining: segmental lining with in-situ concrete inner lining with external water proofing; Escape and rescue tunnel: $4,390 \mathrm{~m}$ constructed by a Gripper-TBM and 70 m using a roadheader, TBM diameter: 4.75 m , lining: shotcrete with wire mesh reinforcement and anchors
Geology:
Section 3.1: Ground moraine (glacial gravels)
Section 3.2: Rock (molasse) and loose rock (gravel, lake sediments)


## Limmern Access Tunne

Switzerland

General Data:
Project:

Client:
Contractor:

Construction period:
Construction costs:

Technical Data
Scope of work:

Limmern Access Tunnel I, Section A1, transportation tunnel to the machine cavern of the new extension to Limmern Pumped Storage Power Plant

Kraftwerke Linth-Limmern AG (KLL)
Wayss \& Freytag Ingenieurbau AG
in a joint venture
October 2009 to May 2013
$€ 89$ million

Length of access tunnel (inclined tunnel): $3,762 \mathrm{~m}$, gradient: $24 \%$,
internal diameter: min. 7.30 m ;
Portal structure / cut and cover tunnel, length: 18 m ;
horizontal access tunnel to valley station, length: 219 m , excavated cross-section: approx. 70 m cavern of valley station, length: 35 m , excavation volume: $9,500 \mathrm{~m}^{3}$

Construction method. Inclined tunnel: tunneling using a Gripper-TBM,
bore diameter of TBM: 8.03 m ,
lining: anchors, wire mesh reinforcement and 2 layers of shotcrete;
access tunnel to valley station: drill and blast method with sprayed concrete support;
cavern of valley station: drill and blast method
Geology:
Quintner limestone with karstic features


## General Data:

Project:
Tridel Tunnel in Lausanne, Switzerland, single-track railway tunnel
Client:
Contractor:
Construction period: Wayss \& Freytag Ingenieurbau AG in a joint venture

Construction costs: 2004 to 2006

## Technical Data:

Scope of work:
Length: 3.6 km, excavated area: 40 m
Construction method: Excavation using a roadheader with pneumatic-tired material transport single-pass lining, with anchored shotcrete partly with arches

Geology:

## Uetliberg Tunnel <br> Switzerland

## General Data:

Project:
Uetliberg Motorway Tunnel, two parallel tunnels, each for three lanes
Client:

Contractor
Construction perio
Construction costs:
Baudirekton Kanton Zürich [Building Authority of the Canton of Zurich]


Wayss \& Freytag Ingenieurbau AG
in a joint venture

That
Technical Data:
Scope of work:
unnels, each 4.4 km long, excavated area: 160 m
Construction method: Soft ground tunnelling: approx. 1.6 km in 7 sections; drill and blast tunnelling: approx. 1.2 km in 3 sections; pilot TBM ( 5 m diameter): 5.6 km ;


## Oenzberg Tunne

Switzerland
General Data:

Project:

Client:

Contractor:

Construction period:
Construction costs:
echnical Data

## Scope of work:

 dauble-track railway tunnel (Oenzberg 2 single-track branch-off tunnels (Wolfacher Tunnels), lengths: 754 m , excavated cross-section: 80 mConstruction method: Oenzberg Tunnel: TBM-tunnelling using a convertible TBM: $1,925 \mathrm{~m}$ in hard rock mode, 340 m in slurry shield mode, shield diameter: 12.34 m , double lining consisting of reinforced concrete segments and an in-situ concrete inner lining with external water proofing; branch-off tunnels (Wolfacher Tunnels): roadheader tunnelling: 900 m , sprayed concrete lining (SCL) method; cut and cover method $=0.1 \mathrm{~km}$

Geology: Molasse, moraine Switzerland

## General Data:

Project:
Client:
Contractor:
Construction period:
Construction costs:

Technical Data:
Scope of work:
shafts, depth: 100 m , max. diameter: 25 m
2 caverns with a volume of $70,000 \mathrm{~m}^{3}$ and
$100,000 \mathrm{~m}^{3}$ respectively; various smaller tunnels
Construction method:
Sprayed concrete lining method with excavator and chisel,

Geology:
Complete remodelling of the particle accelerator CERN - European Organization for Nuclear Research
in-situ concrete inner lining

Molasse

CERN Nuclear Research Centre, Geneva


Oenzberg Tunnel, double-track railway tunnel, new railway line between Zurich and Bern ( $200 \mathrm{~km} / \mathrm{h}$ )


Wayss \& Freytag Ingenieurbau AG
in a joint venture
1999 to 2003
$€ 150$ million

## Singapore Metro, North-East Line, Contract C704

Singapore
General Data:
Project:
Singapore Metro, North East Line, Contract C704 single-track metro tunnel
Client: Land Transport Authority of Singapore (LTA)
Contractor:
Wayss \& Freytag AG
as technical and commercial leader of a joint venture
Construction period: $\quad 1997$ to 2002


Construction costs: $€_{177 \text { million }}$

## Technical Data:

Scope of work:
2 tunnel tubes
length: 2,550 m each, internal diameter: 5.80 m
6 cross-passages at intervals of 250 m
2 stations:
Serangoon Station, 205 m long, Woodleigh Station, 210 m long, built in an open excavation supported by shoring (soldier piles and timber lagging), designed as civil defence shelters,
turn-key
1 viaduct with 2 separate superstructures with $2 \times 3$ lanes, length: $1,750 \mathrm{~m}$, width: $2 \times 11.40 \mathrm{~m}$, using overhead launching system and the free cantilever method for large-span areas
Contiguous bored pile walls for Braddell Bartley Underpass, approx. 1 km long, and soldier pile and timber lagging for the excavation of the Upper Paya Lebar Underpass box structure, and timber lagging for
extensive roadworks
3 pedestrian bridges
1 switching substation
Construction method: TBM tunnelling using 2 EPB shields, shield diameter: 6.56 m cross-passages built using NATM techniques with an in-situ concrete inner lining

Geology:
Sand, clay, granite

## Project References

| CONSTRUCTION PERIOD | PROJECT AND CLIENT | SCOPE OF WORKS | CONSTRUCTION METHOD |
| :---: | :---: | :---: | :---: |
| 2015/2019 | Eppenberg Tunnel, Subproject 1 (CH); SBB Infrastruktur | Railway tunnel, double-track, $I=2,613 \mathrm{~m}$, shielddriven, shield diameter $12.75 \mathrm{~m}, 3$ escape and rescue tunnels and associated shafts, 5 niches for technical installations in the tunnel, double tunnel lining: segmental lining and in-situ concrete inner lining, each 30 cm thick | Hard Rock TBM and Hydroshield |
| 2015/2017 | Darmsheim Northern Bypass, L1182 Darmsheim Tunnel (D); Federal State of Baden-Württemberg, represented by Regierungspräsidium Stuttgart | Double-lane road tunnel, length 460 m | Drill and blast method |
| 2015/2016 | Europagarten Tunnel, Frankfurt am Main (D); aurelis Asset GmbH, represented by aurelis Real Estate GmbH \& Co. KG, Eschborn | Road tunnel with three tubes, length 533 m , of which 395 m are a covered over section constructed using the cut and cover method | Cut and cover method |
| 2014/2018 | Gemeinschaftskraftwerk Inn hydroelectric power plant (A); Tiroler Wasserkraft/EKW-OEE/Verbund | Headrace, inclined shaft, approx. 400 m , incline less $31 \%$, excavation and support work, $\mathrm{d}=100 \mathrm{~m}$, tunnel drive from the opposite direction approx. 1,000 m access tunnel, caverns | Drill and blast method and tunnel excavator |
| 2014/2017 | Renovation of light railway system under Dortmund Central Station, Section 20 (D); <br> Stadt Dortmund (Tiefbauamt) | Renovation and extension of light railway system under central railway station, construction of mined tunnel pipe roof support system, manned pipe jacking using an open hooded shield, diameter $1,600 \mathrm{~mm}$ | Tunnel excavator |
| 2014/2017 | Ag Pyhrn Motorway, Construction of Second Tubes, Section 5 Spering and Falkenstein Tunnels, Section 4 Klauser and Traunfried Tunnels (A); ASFINAG Baumanagement gmbH | Double-lane motorways tunnels: Spering Tunnel: $\mathrm{L}=2,894 \mathrm{~m}, 10$ cross-passages, 2 emergency lay-bys; Falkenstein Tunnel: $\mathrm{L}=752 \mathrm{~m}, 2$ cross-passages; Klauser Tunnel: L=2,166m, 8 cross-passages, 2 emergency lay-bys; Traunfried Tunnel: $L=462 \mathrm{~m}$; 2 operational buildings and fire water tanks | Drill and blast method and tunnel excavator |
| 2013/2017 | Pyhrn Motorway, Construction of Second Tube for Gleinalm Tunnel (A); <br> ASFINAG Baumanagement GmbH | Double-lane motorway tunnel, $\mathrm{L}=8,047 \mathrm{~m}, 34$ cross passages, $L=840 \mathrm{~m}, 8$ emergency lay-bys and 7 ventilation bays, area $=110+120 \mathrm{~m}^{2} ; 2$ portal galleries and ventilation towers | Drill and blast method |
| 2013/2016 | Widderstall Tunnel, New Stuttgart-Augsburg Railway Line, Wendlingen-Ulm-Section, PFA Albhöhe, VE: 230-1 (D); DB Projekt Stuttgart-Ulm GmbH | Double-track railway tunnel, length 962 m | Cut and cover method |
| 2013/2014 | Seepage Water Tunnel at Sylvenstein Reservoir near Lenggries, Germany; Wasserwirtschaftsamt Weilheim for Freestate Bavaria | Lot 1 : lenght 80 m , Access shaft and start cavern $1,000 \mathrm{~m}^{3}$, 2 Pressure bulkheads; Lot 2 : Drive reception shaft, $\mathrm{D}=7 \mathrm{~m}$ and launching cavern $\mathrm{L}=15 \mathrm{~m}$; Lot 3 : water seepage tunnel, $\mathrm{D}=3.0 \mathrm{~m}, \mathrm{~L}=$ approx. 160 m | Drill and blast method TBM |
| 2012/2018 | Stuttgart 21, PFS 1,5, Lot 3 railway connection from Stuttgart Main Station to Bad Cannstatt (Germany); DB Netz AG, represented by DB Projektbau StuttgartUlm GmbH | Railway Tunnel, single track: length: 5,050 mand double track length: $1,050 \mathrm{~m}, \mathrm{~A}=70-220 \mathrm{~m}^{2}$; Metrotunnel, 345 m single track and 575 double-track, $A=50-100 \mathrm{~m}^{2} ; 790 \mathrm{~m}$ rescue tunnel, $\mathrm{A}=20-40 \mathrm{~m}^{2}$ | Drill and blast method and tunnel excavator |
| 2012/2017 | Large-Scale Emscher Sewerage Tunnel Project, Section 30 between Dortmund Mengede and Sewerage Plant Bottrop (Germany), Emschergenossenschaft | Length $47,000 \mathrm{~m}$, construction of 130 excavation pits, 115 shafts, sewerage tunnel in 117 individual drives varying in lenght from under 20 m to $1,150 \mathrm{~m}$ | Pipe Jacking EPB Shield Hydroshield |
| 2012/2013 | Koralmbahn Graz-Klagenfurt, Koralmtunnel, Lot Ventilation Building Paierdorf B 11968 (Austria); ÖBB Infrastruktur Bau AG | Ventilation Building northern tube, Enttrance cavern, length: $18 \mathrm{~m}, \mathrm{~A}=120 \mathrm{~m}^{2}$; ventilation tunnel North, lenght: $93 \mathrm{~m}, \mathrm{~A} \circ 36 \mathrm{~m}^{2}$, gradient $14^{\circ}$, southern tube widening to full diameter; length: 250 m ventilation shaft finishing, $\mathrm{H}=117 \mathrm{~m}$, Maintaining exploration building during construction period | Drill and blast method and tunnel excavator |


| CONSTRUCTION PERIOD | Project and client | SCOPE OF WORKS | CONSTRUCTION METHOD |
| :---: | :---: | :---: | :---: |
| 2011/2018 | Crossrail Western Tunnels incl. Bond Street and Tottenham Court Road Stations, London, Contracts $\mathrm{C}_{300}$ and C410 (United Kingdom); Crossrail Limited | 2 parallel, single-track railway tunnels; length: 5.9 km each; shield diameter: 7.10 m ; internal diameter: 6.20 m ; segmental lining; | EPB shield |
| 2011/2015 | Corrib Pipeline Tunnel (County Mayo, Ireland); Shell E\&P Ireland Ltd. | Utility tunnel for a gas pipeline; length: $4,900 \mathrm{~m}$; shield diameter: 4.24 m ; internal diameter: 3.50 m ; steel fibre reinforced segmental lining; installation of gas pipeline by floating method | Hydroshield |
| 2010/2015 | Sluiskil Canal Crossing, Terneuzen/Sluiskil (Netherlands); Province of Zeeland represented by BV Kanaal-kruising Sluiskil | Twin-bore road tunnel; length: 1.15 km each; shield diameter: 11.32 m ; internal diameter: 10.10 m ; reinforced concrete segmental lining | Hydroschild |
| 2010/2016 | Tunnel Kö-Bogen, Duesseldorf (Germany); | Inner City Road Tunnel and ramps in open construction, length: $1,603 \mathrm{~m}$; Bored Piles and diaphragm walls, cover | excavator and Top-Down method |
| 2010/2012 | Glendoe Recovery Project (Scotland, United Kingdom); Scottish Southern Energy | Construction of a bypass tunnel (length: 605 m , A $=28 \mathrm{~m}^{2}$ ) around a collapse area and an access tunnel (length: $550 \mathrm{~m}, \mathrm{~A}=28 \mathrm{~m}^{2}$ ) to the headrace tunnel; repair works in the headrace and tailrace tunnel | Drill and blast method |
| 2009/2015 | Tunnel Luise-Kiesselbach-Platz, Munich (Germany); City of Munich | Inner City Road Tunnel, length: $2,800 \mathrm{~m}$, Bored Piles, Top-Down Method 2,000 m; open construction approx. 800 m | Bored Piles, TopDown Method, Cut and Cover method |
| 2009/2013 | Limmern Access Tunnel I (Switzerland); Kraftwerke Linth-Limmern AG | Access tunnel (inclined tunnel); length: $3,762 \mathrm{~m}$; shield diameter: 8.03 m ; internal diameter: min. 7.30 m ; lining: anchors, wire mesh reinforcement and 2 layers of shotcrete | Gripper-TBM |
| 2009/2013 | Koralm Railway Line between Graz and Klagenfurt, B1961 (Austria); ÖBB Infrastruktur Bau AG | Koralm Tunnel, Contract Section KAT 1: two singletrack drill and blast railway tunnels; length: $1,961 \mathrm{~m}$ each; 280 m of double-track tunnel using the cut and cover method | Drill and blast method and tunnel excavator |
| 2009/2012 | German Unity Transport Project VDE 8, Upgraded and New Railway Lines between Nuremberg and Berlin (Germany); DB Netz AG | Brandkopf Tunnel and Lohmeberg Tunnel on the Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway line: 2 NATM tunnels; lengths: 1,493 m and 688 m | Drill and blast method and tunnel excavator |
| 2009/2012 | German Unity Transport Project VDE8, Upgraded and New Railway Lines between Nuremberg and Berlin (Germany); DB Netz AG | Silberberg Tunnel on the Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway line: double-track railway tunnel; length: $7,391 \mathrm{~m}$ | Drill and blast method and tunnel excavator |
| 2009/2011 | New Coal-Fired Power Plant in Wilhelmshaven (Germany) Lot C121; GDF SUEZ Energie Deutschland AG | Utility tunnel: 4 cooling water pipelines; length: 300 m each, 1 fish return pipeline length: 300 m Pipe Jacking using 2 slurry-supported TBMs, external diameter: 4.1 m | Pipe Jacking, Slurry Mode |
| 2008/2015 | Schuman-Josaphat Tunnel (Belgium); Department Mobiliteit en Vervoer | Double-track railway tunnel; length: 1,400 m; | Pipe Jacking, Open Mode, Top-Down Method |
| 2008/2013 | Liefkenshoek Rail Link, Antwerp (Belgium); Infrabel | Double-track railway tunnel; length: 12 km ; shield diameter: 8.32 m ; internal diameter: 7.30 m ; segmental lining | Hydroshield |

## - EPB shield <br> Drill and blast method

- Road header

Hard Rock TBM
Cut and cover method
-Gripper-TBM

Mixshield/Hydroshield

- Top-Down method

Tunnel excavator

## Project References

| CONSTRUCTION PERIOD | PROJECT AND CLIENT | SCOPE OF WORKS | CONSTRUCTION METHOD |
| :---: | :---: | :---: | :---: |
| 2008/2010 | Ems-Dollard Crossing (between Germany and the Netherlands); Nederlandse Gasunie | Utility tunnel for a gas pipeline; length: $4,050 \mathrm{~m}$; shield diameter: 3.6 m ; internal diameter: 3.0 m ; steel fibre reinforced segmental lining | Hydroshield |
| 2008/2012 | Stafelter Tunnel (Luxembourg); Grand-Duché de Luxembourg, Ministère des Travaux Publics, represented by Administration des Ponts et Chaussées | 2 double-lane motorway tunnels; length: 1,850 m each; excavated area $=74-114 \mathrm{~m}^{2}$ ); $1,650 \mathrm{~m}$ are constructed using mining techniques and $200 \mathrm{~m} u$ using the cut and cover method | Bagger- und Sprengvortrieb |
| 2007/2014 | Weinberg Tunnel, Sections 3.1 and 3.2, Zurich, as part of the Zurich Main Station-Altstetten-Oerlikon Diameter Line (Switzerland); SBB AG represented by Infrastruktur-Projekt Management Durchmesserlinie | Section 3.1: 220 running metres of longitudinal tunnels (excavated area: approx. $36 \mathrm{~m}^{2}$ ) and 390 running metres of transverse tunnels (excavated area: $14 \mathrm{~m}^{2}-17 \mathrm{~m}^{2}$ ). Section 3.2: Double-track railway tunnel; total length: $4,537 \mathrm{~m}$, of which $4,382 \mathrm{~m}$ are driven by convertible TBM (hard rock mode: $4,105 \mathrm{~m}$, slurry mode: 277 m ); TBM diameter: 11.23 m ; internal diameter: 9.74 m ; double lining: segmental lining with in-situ concrete inner lining with external water proofing. Escape and rescue tunnel; length $4,460 \mathrm{~m}$; excavated by Gripper-TBM ( $4,390 \mathrm{~m}$ ) and road header ( 70 m ) ; shield diameter 4.75 m ; internal diameter: 4.35 m ; lining with shotcrete with wire mesh reinforcement and anchors | Hard Rock TBM and Hydroshield Gripper-TBM |
| 2007/2013 | Wehrhahnlinie Lot 2, Germany; City of Duesseldorf | Metro tunnel with connecting platform to Station Heinrich-Heine Allee,drive lenght: 75 m , Ground freezing | Drill and blast method |
| 2007/2012 | Diabolo Project, Brussels Airport (Belgium); Northern Diabolo nv (PPP company for the railway tunnel) and Via-Zaventem nv (PPP company for the road construction part) | 2 TBM-driven single-track railway tunnels, length: approx. $1,100 \mathrm{~m}$ each, shield diameter: 8.27 m , internal diameter: 7.30 m , segmental lining; approx. $1,100 \mathrm{~m}$ of tunnel built using the top-down method; approx. 2,300 m of cut and cover tunnel | Mixshield |
| 2007/2010 | Koralm Railway Line between Graz and Klagenfurt, B1581 (Austria); ÖBB Infrastruktur Bau AG | Contract Section 3-Hengsberg Tunnel; double-track railway tunnel, length: $1,700 \mathrm{~m} ; 1,035 \mathrm{~m}$ mined tunnel; 450 m driven using the cut and cover method; 250 m built using the top-down method | Drill and blast method and tunnel excavator |
| 2007/2009 | Völkermarkt Bypass (Austria); Land Kärnten | Lilienberg Tunnel; two-lane road tunnel; length: $1,090 \mathrm{~m}$ | Drill and blast method and tunnel excavator |
| 2007/2010 | U6 Metro Link to Fasanenhof (Germany); Stuttgarter Straßenbahnen AG | Double-track metro tunnel; cut and cover tunnel, length: 852 m ; mined tunnel, length: 380 m , excavated cross-section: $90 \mathrm{~m}^{2}$; sprayed concrete lining (SCL) | Tunnel excavator |
| 2006/2012 | Finne Tunnel (Germany); DB Netz AG, represented by DB Projekt Bau GmbH, Projektzentrum Leipzig | Single-track railway tunnel; length: $13,644 \mathrm{~m}$; shield diameter: 10.88 m ; internal diameter: 9.6 m ; segmental lining | Hydroshield Hard Rock TBM |
| 2006/2010 | Roppen Tunnel, Second Tube (Austria); ASFINAG Baumanagement GmbH | Double-lane motorway tunnel; length: 5.095 m ; sprayed concrete lining (SCL) | Drill and blast method |
| 2006/2009 | B1 Federal Road Wiener Straße, Henndorf Bypass (Austria); Land Salzburg, Landesbaudirektion | Double-lane road tunnel; total length: $2,150 \mathrm{~m}$; 1.4 km by drill and blast method in combination with tunnel excavator; 732 m by cut and cover method | Drill and blast method and tunnel excavator |
| 2004/2010 | Munich Metro, Line 3 North, Section 2, (Germany); Landeshauptstadt München, Baureferat U-Bahn | Single-track metro tunnel; length: $2,410 \mathrm{~m}$; shield diameter: 7.34 m ; internal diameter: 6.30 m ; segmental lining | Hydroshield |



## Project References

| CONSTRUCTION PERIOD | PROJECT AND CLIENT | SCOPE OF WORKS | CONSTRUCTION METHOD |
| :---: | :---: | :---: | :---: |
| 1999/2008 | Uetliberg Tunnel (Switzerland); Baudirektion Kanton Zürich | Two parallel triple-lane motorway tunnels, length: 2 x 4.4 km ; excavated area: $160 \mathrm{~m}^{2}$; soft ground tunnelling: 1.6 km in 7 sections; drill and blast tunnelling: 1.2 km in 3 sections; Pilot TBM, diameter: $5 \mathrm{~m}: 5.6 \mathrm{~km}$ (extended to 14.4 m diameter:); cut and cover: 0.4 km | TBM and TBE Drill and blast method and tunnel excavator |
| 1999/2003 | Rennsteig Tunnel on BAB A71 Erfurt-Schweinfurt (Germany); DEGES Deutsche Einheit Berlin Fernstraßenplanungs- und bau GmbH | Two-lane motorway tunnel; twin-tube; length: $2 \times 7.9$ km ( $\mathrm{A}=80 \mathrm{~m}^{2}$ ); sprayed concrete lining (SCL) | Drill and blast method |
| 1999/2002 | Velbert-Langenberg Tunnel (Germany); Landschaftsverband Rheinland/Essen | Double-lane road tunnel; length $486 \mathrm{~m}\left(\mathrm{~A}=85 \mathrm{~m}^{2}\right)$; sprayed concrete lining (SCL) | Drill and blast method in combination with tunnel excavator |
| 1998/2003 | CERN Nuclear Research Centre, Geneva (Switzerland); CERN - European Organization for Nuclear Research | Construction of industrial buildings on ground level and underground buildings for ATLAS-Detector; 3 shafts, max. diameter: $25 \mathrm{~m}, 100 \mathrm{~m}$ deep; 2 caverns of $70,000 \mathrm{~m}^{3}$ and $100,000 \mathrm{~m}^{3}$; various smaller tunnels | SCL method with tunnel excavator and chisel |
| 1998/1999 | New baggage system at Zurich Airport (Switzerland); Flughafen Immobiliengesellschaft Zurich (FIG) | Baggage tunnel; length 490 m ; shield diameter: 6.28 m ; internal diameter: 5.40 m ; segmental lining | Mixshield |
| 1998/2002 | Botlek Tunnel (Netherlands); NS Railinfrabeheer (Dutch Railway) | Single-track railway tunnel; length $3,670 \mathrm{~m}$; shield diameter: 9.75 m ; internal diameter: 8.65 m ; segmental lining | EPB shield |
| 1997/2003 | Westerschelde Tunnel (Netherlands); Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat | Road tunnel; length: $13,200 \mathrm{~m}$; shield diameter: 11.34 m ; internal diameter: 10.10 m ; segmental lining | Mixshield |
| 1997 | Singapore Metro, North East Line, Contract C704 (Singapore); Land Transport Authority of Singapore (LTA) | Single-track metro tunnel; length $5,100 \mathrm{~m}$; shield diameter: 6.56 m ; internal diameter: 5.8 m ; segmental lining | EPB shield |
| 1997/2003 | Zimmerberg Base Tunnel, second double-track line between Zurich Main Station and Thalwil, Section 2.01 (Switzerland); Schweizerische Bundesbahnen (SBB) | Double-track railway tunnel; length $2,619 \mathrm{~m}$; shield diameter: 12.34 m ; internal diameter: 10.84 m ; double lining consisting of reinforced concrete lining and in-situ inner lining with external water proofing | Hard Rock TBM Hydroshield |
| 1997/2003 | Zimmerberg Base Tunnel, second double-track line between Zurich Main Station and Thalwil, Section 3.01 (Switzerland); Schweizerische Bundesbahnen (SBB) | Double-track railway tunnel; length $6,421 \mathrm{~m}$; shield diameter: 12.29 m ; internal diameter: 10.84 m ; double lining consisting of reinforced concrete lining and in-situ inner lining with external water proofing | Hard Rock TBM |
| 1996/2001 | New Cologne-Rhine/Main High-Speed Railway Line, Central Section, Lot B (Germany); Deutsche Bahn AG | Railway tunnels: Elzer Berg Tunnel ( $1,110 \mathrm{~m}$ ); Himmelberg Tunnel ( $2,395 \mathrm{~m}$ ); Wahnscheid Tunnel ( 735 m ); Dickheck Tunnel ( 575 m ); all: A = 147-164 $\mathrm{m}^{2}$; sprayed concrete lining (SCL) | Drill and blast method in combination with tunnel excavator |
| 1996/2000 | Munich Underground Railway, Line 2 East, Lot 2 Trudering (Germany); Landeshauptstadt München, U-Bahn-Referat | Metro tunnels; lengths: $3,200 \mathrm{~m}\left(\mathrm{~A}=40 \mathrm{~m}^{2}\right)$ and 300 m $\left(A=80 \mathrm{~m}^{2}\right)$; sprayed concrete lining (SCL) | Tunnel excavator |
| 1996/2000 | Rio Subterraneo Tunnel, Buenos Aires (Argentina); Aguas Argentinas S.A. | Water supply tunnel; length: $15,160 \mathrm{~m}$; shield diameter: 4.35 m ; internal diameter: 3.50 m ; segmental lining | EPB shield |
| 1996/1999 | Izmir Light Rail Transit System (Turkey); City of Izmir | Double-track light rail tunnel; $1,388 \mathrm{~m}$ NATM tunnel ( $\mathrm{A}=64 \mathrm{~m}^{2}$ ); 284 m station ( $\mathrm{A}=130-140 \mathrm{~m}^{2}$ ); sprayed concrete lining (SCL); 2 parallel, single-track shielddriven tunnels; total length: $2,750 \mathrm{~m}$; shield diameter: 6.54 m ; internal diameter: 5.92 m ; segmental lining | Road header EPB shield |

$\left.\begin{array}{|c|l|l|l|}\hline \begin{array}{l}\text { CONSTRUCTION } \\ \text { PERIOD }\end{array} & \text { PROJECT AND CLIENT } & \text { SCOPE OF WORKS } & \\ \hline \text { CONSTRUCTION } \\ \text { METHOD }\end{array}\right]$

## EPB shield

Drill and blast method

- Road header

```
Hard Rock TBM - Cut and cover metho Gripper-TBM
```

Mixshield/Hydroshield

- Top-Down method
- Tunnel excavator

