Wayss & Freytag Ingenieurbau AG

Eschborner Landstraße 130–132 | D-60489 Frankfurt am Main www.wf-ingbau.de

Tunnelling Division

Eschborner Landstraße 130–132 D-60489 Frankfurt am Main

Persons to contact Mechanised Tunnelling: Dr. Klaus Rieker Dipl.-Ing. Sascha Boxheimer

 Telephone:
 +49 (0) 69 7929-400

 Telefax:
 +49 (0) 69 7929-490

 E-Mail:
 tunnelbau@wf-ib.de

Southern Division Geisenhausener Straße 15 D-81379 München

Persons to contact Conventional Tunnelling: Dipl.-Ing. Helmut Weber Dipl.-Ing. Holger Sawitzki

 Telephone:
 +49 (0) 89 78025-0

 Telefax:
 +49 (0) 89 78025-105

 E-Mail:
 ingbau.muenchen@wf-ib.de

Central Division Wiesenstraße 21 a II D-40549 Düsseldorf

Persons to contact Cut and cover method: Dipl.-Ing. Dipl.- Wirtsch.-Ing. Thomas Fiedler Dr.-Ing. Holger Meseck

Telephone: +49 (0) 211 5028-0 Telefax: +49 (0) 211 5028-215 E-Mail: ingbau.duesseldorf@wf-ib.de

Tunnels

Tunnelling Specialist of the Royal BAM Group

Tunnelling Specialist of the Royal BAM Group

Tunnels

Connections for Life

Creative engineering is our main focus. We understand design, conception and execution to be individually developed solutions in response to the tasks set by our clients.

As an internationally renowned construction company, we design environments, establish permanent connections between people and places and thus achieve perceptible improvements for both clients and users. In short: We create quality of life for the world of tomorrow.

Customer-oriented thinking and responsible actions form the basis of our business. After all, the success of each and every construction project is always closely linked to the quality of cooperation with our clients.

Wayss & Freytag Ingenieurbau AG is a member of the **Royal BAM Group**, one of the biggest European construction companies with its head office in the Netherlands. This powerful foundation enables us to take full advantage of all chances offered by international cooperation. For our clients this results in the greatest possible transparency in all phases of a project as well as availability of comprehensive know-how in conjunction with maximum regional presence.

At Wayss & Freytag Ingenieurbau AG more than 140 years of experience and the technological expertise of today converge. A lean structure ensures the optimum realization of our clients' projects. In our competence centres created just for this purpose specialist groups of our best staff work in close cooperation to find the most appropriate solution for every technological challenge.

Wayss & Freytag Ingenieurbau AG is active worldwide in the field of tunnelling. On the international market, the company carries out projects in which it distinguishes itself by its special know-how and excellent performance.

The scope of our activities ranges from mechanized and conventional tunnelling, the construction of sewage treatment plants and power plants, railway, bridge and stadium construction and industrial construction to environmental technology. Engineering consulting, location analyses, utilization concepts and feasibility studies complete our range of services.

Mechanized Tunnelling

In the past Wayss & Freytag was significantly involved in the development of mechanized tunnelling techniques. For example, they initiated the support of the tunnel face by means of a bentonite suspension and air-cushion. With the so-called "slurry shield" this technique was brought to operational maturity. Wayss & Freytag is a pioneer of this technique and has in the meantime driven more than 150 km of tunnel using slurry shields. In addition, more than 80 km of tunnel were driven using earth pressure balance shields and 30 km using hard rock TBMs.

Conventional Tunnelling

The construction of tunnels using conventional construction methods has always been a challenge to every engineer. Here, the engineer's most important task is the evaluation of the geology and the selection of the right means of securing the excavation face until final completion of the inner lining. Wayss & Freytag already rose to this challenge in 1905 when building a railway tunnel using the conventional tunnelling method in Wasserburg/Inn in gompholite (Nagelfluh) and gravel.

The range of conventional tunnelling reaches from soft rock tunnelling (e. g. a metro tunnel in Munich gravel) and tunnelling in compressed air (e. g. Ostbahnhof metro station in Munich in Tertiary formations below groundwater) to classic drill and blast drives (e. g. Rennsteig Tunnel on the A 71 motorway, which, with a length of 8 km, is the longest motorway tunnel in Germany).

CONTENTS

Connections for the Future
Germany Large-scale project "Emscher" Sewerage Tunnel, BA30 (BA = construction lot)
Bad Cannstatt Tunnel
Darmsheim Tunnel
Europagarten Tunnel, Frankfurt
Luise-Kiesselbach-Platz
Widderstall Tunnel

	!	3
Wehrhahnlinie (Wehrhahn Line) Lot 2	1	4
Tunnel Kö-Bogen	1	5
Construction of the new "Sylvensteinspeicher" Seepage Water Tunnel	6–1	7
Silberberg Tunnel	1	8
Finne Tunnel	1	9
Cologne North-South Light Railway, Southern Section	2	0
Brandkopf / Lohmeberg Tunnels.	2	21
New Central Services Tunnel for Brunsbüttel Lock	2	2
New Coal-Fired Power Plant in Wilhelmshaven	2	3
Katzenberg Tunnel	1-2	5
Munich Metro, Line 3 North, Section 2	2	6
Stuttgart Metro, Line U6 Fasanenhof	2	7
Pipe Jacking under Leipzig Main Station	2	8
Dortmund Ostentor Light Railway	2	9
Rennsteig Tunnel	3	0
Velbert-Langenberg Tunnel		۲۱

Belgium

BOLL I BE

Liefkenshoek Rail Link	 		 			 					 			. 32
Diabolo Project	 		 	• •		 	•				 	•	 •	• 33
Schuman-Josaphat Tunnel	 		 	• •		 	•				 	•	 •	•34
Antwerp North-South Link (ASDAM).	 • • •	•••	 • •	••	•••	 	•	•••	• •	•	 • •	•	 •	·35

Hunited Kingdom

Crossrail Western Tunnels and Bond Street and
Tottenham Court Road Stations, London
Glendoe Recovery Project
Channel Tunnel Rail Link

0	Ireland Corrib Pipeline Tunnel
	LuxembourgStafelter TunnelGrouft Tunnel43
	Malaysia SMART Tunnel
	The NetherlandsSluiskil Canal Crossing46Ems-Dollard Crossing47Hubertus Tunnel48Westerschelde Tunnel49
	AustriaKoralm Tunnel KAT 1
0	SwitzerlandEppenberg Tunnel
<u> </u>	Singapore Singapore Metro, North-East Line, Contract C704
	Project References

Expertise in and around tunnelling

We offer you the customized solution for your tunnelling projects. From planning through work preparation, execution to operation and maintenance, we develop innovative solutions to suit the specific requirements of your projects.

The experienced teams in our **Technical Department** are at your disposal to provide optimal planning for your projects from the very beginning. Work preparation, material technology as well as individual monitoring throughout all phases of your project belong to our range of services. They comprise feasibility studies, risk analyses, design and consulting. Furthermore, we offer geotechnical evaluations, expert advice, structural analyses and much more.

The experts in our **Material Technology** Department develop concrete and mortar with special characteristics for your project to meet your particular requirements. Besides this, our team supports you with concreting and concrete curing concepts as well as with quality assurance concepts.

The **W&F Tunnel Technology Department, our centre of expertise for equipment technology,** offers customized solutions for equipment concepts for all aspects of mechanized tunnelling according to your requirements. Our services are based on the experience gained on over 300 km of tunnels, driven using tunnel boring machines (TBMs) operated in slurry shield, earth pressure balance (EPB) and hard rock mode.

Our services range from the rental of individual items such as small machines through the development of conceptual designs to the supply and operation of complex large-scale equipment for all geological requirements. On request we can also provide you with our trained and experienced staff to maintain the equipment during operation or with a complete tunnelling team, including the respective management staff.

For your project we can also provide you with separation plants (STP), mud treatment equipment (MTP), slurry circuits for the conveying of excavated material, batching plants, compressed air stations, container systems, booster stations and cooling water systems, tunnel ventilation, safety equipment as well as electrical plants.

With our experienced and reliable teams in **Special Foundation Works** we also offer experienced and sound competence in nearly all parts of Europe. Our range of services in the field of specialized civil engineering comprises diaphragm walls and sealing walls (excavation by crawler cranes and diaphragm wall grippers and cutters as temporary or permanent structures with adjusted joint systems), bored piles (single piles and bored pile walls, completely piped, partly piped and slurry-supported), anchors (temporary and permanent anchors, soil nails and Micro-piles), soil injections in light soils and rock, ground freezing as well as planning and execution of turnkey excavation pits.

We look forward to meeting your challenges!

Large-scale project "Emscher" Sewerage Tunnel, BA₃o (BA = construction lot) Germany

Project:	Emscher Sewerage Tunnel, construction lot (BA)30 (BA 31, BA 32, BA 33) between Dortmund-Mengede and Bottrop Sewage Treatment Plant
Client:	Emschergenossenschaft
Contractor:	Wayss & Freytag Ingenieurbau AG, Central, Tunnelling & Specialized Civil Engineering/Special Foundation Engineering Divisions
Construction period:	March 2012 to January 2017
Construction costs:	€ 420 million

Technical Data:

- Project description: construction of 130 excavation pits, 115 shaft structures and approx. 47 km of sewerage tunnel in 117 individual drives with individual lengths of < 20 m to 1.150 m
- **Construction method:** For excavation pits the diaphragm wall and bored pile construction methods. Pipe jacking with DN 1600, DN 1800, DN 2200, DN 2400 and DN

2800 with 9 full-face TBMs using both the EPB- and slurry method. Crossing beneath waterways (Emscher Canal, Rhein-Herne- Canal), railway lines, roads, dams, buildings and pipelines.

Standard pipe length 4 m. Thickness of pipe walls between 21 cm and 39 cm.

Pipes consisting of acid-resistant concrete, some with additional special protection against corrosion.

Microtunnel DN 300 to DN 1200. maximum allowed settlement 20 mm Construction of shaft structures with conventional climbing formwork and slipform method. Also executed in acid-resistant concrete, partly with a special PE-HD lining as special protection against corrosion.

Geology:

Emscher marl, sandy and silty clays, tunnel alignment entirely below the groundwater table with a water pressure of up to 3 bar above the pipe invert level.

Germany

General Data:

Project:	Stuttgart 21 PFA (section) 1.5, Lot 3 Long-distance route
Client:	DB Netz AG, Frankfurt/Main represented b
Contractor:	Wayss & Freytag Ingenieurbau AG in a join
Construction period: 2	012 - 2018
Construction costs:	approx. € 285 million

Technical Data:

Project description:	5050 m single-track and 1050m double-t and 575m double-track suburban railway 790m rescue tunnel; $A = 20 - 40m^2$, app
Construction methods:	Drill and blast method and tunnel excava shotcrete shafts, elevation grouting
Geology:	leached and non-leached gypsum Keupe

e from Stuttgart Main Station to Bad Cannstatt y DB Projektbau Stuttgart - Ulm GmbH

t venture

track long-distance railway tunnel; A = 70-220 m², 345m single-track y tunnel, A = 50-100 m² prox. 6om deep smoke extraction structure, 1 rescue shaft depth = 20m ator, reinforced inner lining partly with foil sealing Bored pile lining,

er, partly containing anhydrite

Darmsheim Tunnel Germany

General Data:

Project:	Darmsheim Northern Bypass, L1182 Darmsheim Tunnel
Client:	Federal Land of Baden –Württemberg represented by RP Stuttgart
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	2015 to 2017
Construction costs:	€13.5 million

Project description:	Two-lane road tunnel; Length 460 m; A= 95 - 120m ² Escape and safety tunnels l = 328 m, A = 13.5 – 18.3 m ²				
Construction method:	Drill and blast				
Geology:	Upper shell limestone				

Europagarten Tunnel, Frankfurt Germany

General	Data:
---------	-------

Project:	Europagarte
Client:	aurelis Asset aurelis Real B
Contractor:	Wayss & Frey
Construction period:	January 2015
Construction costs:	approx.€25

Technical Data:

Scope of work:

Construction method: Cavern with diaphragm walls or bored, under water concrete with rear anchoring, Top-Down method

en Tunnel, Frankfurt am Main

t GmbH represented by Estate GmbH & Co.KG, Eschborn

eytag Ingenieurbau AG as technical leader of a joint venture

5- August 2016

5.2 million

Length 533 m, 395 m covered over section using the cut and cover method

Three tubes: outer tube for motor traffic inner tube for tram Ramps with clear width 6.50/ 7.90/6.50 m and clear width of 5.71 m Two pump buildings including operational building and road works, operational and traffic installations

10 | 11

Luise-Kiesselbach-Platz Germany

General Data:

Project:	Mittlerer Ring Süd-West (MRSW)(Middle Ring South-West)Tunnel – Luise-Kiesselbach-Platz	
Client:	Landeshauptstadt München Baureferat (Building Authority of F ederal Land Capital of Munich) Abteilungen (Division) J12, T1B, MSE	
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture	
Construction period:	Aug 2009 – Dec 2015, opening for traffic in July 2015	
Construction costs:	€ 398 million	

Technical Data:

Project description: The MRSW-Luise-Kiesselbach-Platz Tunnel Project is the third section of an infrastructure project at the Middle Ring in Munich ratified by a public referendum in 1996. The project comprises the construction of an approx. 2800 m long inner-city tunnel, in bored pile topdown method and cut and cover construction method as well as canal and road works. All works had to be carried out during ongoing traffic on the surface at all times (approx. 150.000 cars/ day) as well as for all utilities in operation and thus required many traffic diversions and numerous construction sections. The heart of the tunnel is considered to be the 2-storey construction of the intersection between motorway connection A95 and Middle Ring to the East and North. Construction method: Bored pile top-down method approx. 2.000 m, cut and cover construction method approx.800 m Geology: quaternary gravel

Widderstall Tunnel Germany

General Data:

Project:	NBS (new construction) Stutte PFA (section) 2.3 Albhöhe; VE 2
Client:	DB Projekt Stuttgart-Ulm Gmb
Contractor:	Wayss & Freytag Ingenieurbau
Construction period:	2013 to 2016
Construction costs:	approx. € 43.7 million

Technical Data:

Project description:	962 m long double-track railwa tunnel lining (shotcrete and ne the karst-prone rock, material reservoir; construction of a new
Construction method:	Cut and cover construction me
Geology:	lower massive limestone

gart-Augsburg Section Wendlingen-Ulm; 230-1 Widderstall Tunnel

bН

AG as technical leader of a joint venture

vay tunnel; 440,000 m³ excavated material with etting); geophysical and direct soil investigation of processing and backfilling; rain retention and w parking and toilet facility at "Albhöhe"

ethod in arch cross-section

Wehrhahnlinie (Wehrhahn Line)Lot 2 Germany

General Data:

Project:	Wehrhahnlinie Lot 2
Client:	Landeshauptstadt (regional federal land capital of) Düsseldorf, Amt für Verkehrsmanagement (authority for traffic management)
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:	2007 to 2016
Construction costs:	€74 million

Technical Data:

Scope of work:	Total length 120 m, approx. 75 m drive under historical Kaufhof- Building Connection to station Heinrich-Heine-Allee , tunnel with segmental lining Lot 1	
Construction method:	Start- and reception cavern with diphragm walls, navigated horizontal drilling R = 350 m for ground freezing, excavation with	

tunnel excavator in two segments with shortcrete

Kö-Bogen Tunnel Deutschland

General Data:

Project:	Tunnel Kö-Bogen
Client:	Landeshauptstadt (regional federal land c Amt für Verkehrsmanagement (authority
Contractor:	Wayss & Freytag Ingenieurbau AG as techr
Construction period:	2010 to 2016
Construction costs:	€ 114 million

Technical Data:

Scope of work:

Construction in two Lots Lot 1: approx. 300 m South-North-Tunnel with 850 m ramp and western junction

Lot 2: approx. 675 m North-South-Tunnel with three ramps approx. 85 m; connection to various subterranean garages, ground levels 7 m to 14 m; 36,000 m³ concrete; 120,000 m³ excavatio

capital of) Düsseldorf, y for traffic management)

nnical leader of a joint venture

Construction method: Cavern with diaphragm walls or bored, under water concrete with rear anchoring, Top-Down method

14|15

Construction of the new "Sylvensteinspeicher" Seepage Water Tunnel Germany

General Data:

Project:	Sylvenstein Dam BA (construction lot) 3, construction of a new seepage water tunnel, Lots 1-3
Client:	Wasserwirtschaftsamt (water authority) Weilheim for the Free State of Bavaria
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	March 2013 to July 2014
Construction costs:	approx. € 5.6 million

Technical Data:

Project description:	Lot 1: Driving of access tunnel L approx. 80 m and start cavern V approx. 1,000 m ³ , construction of 2 pressure partitions(walls), extension of access tunnel incl. tunnel portal, infrastructure provisions
Construction method:	drill and blast, SCL inner lining
Geology:	mainly dolomite
Project description:	Lot 2: driving of target shaft D= 7 m T approx. 40 m and target cavern L approx. 15 m
Construction method:	drill and blast, SCL inner lining
Geology:	mainly dolomite
Project description:	Lot 3: TBM driven seepage water tunnel D=3.0 m, L approx. 160 m Construction method: Pipe jacking with reinforced concrete pipes L=2.8 m, Installation of two soft gel seals respectively in the transition area between rock and dam fill

Silberberg Tunnel Germany

General Data:

Project:	German Unity Transport Project VDE8, Upgraded and New Railway Lines between Nuremberg and Berlin (Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway line) Silberberg Tunnel
Client:	DB Netz AG [German rail company]
Contractor:	Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture
Construction period:	2009 to 2012
Construction costs:	approx. € 264 million

Technical Data:

Scope of work:	7,391 m long double-track railway tunnel, excavated area: 120 m ² - 150 m ² ; 2 intermediate tunnels serving as points of attack; inclined and parallel tunnels, length: 4,395 m, excavated area: 30 m ² ; rescue shaft, depth: 21 m
Construction method:	Drill and blast method and tunnel excavator, waterproofing and inner lining

Thuringian slate mountains, clay/silt rock Geology:

Finne Tunnel Germany

General	Data:
---------	-------

Project:	Finne Tunnel, part single-track railwa
Client:	DB Netz AG [Germ Projektzentrum Le
Contractor:	Wayss & Freytag Ir
Construction period:	December 2006 to
Construction costs:	€ 270 million

Technical Data:

Scope of work:

Geology:

Scope of work:	2 single-track railw 2 cut and cover tun tunnels for technic embankment, leng at all 4 tunnel porta
Construction method:	TBM tunnelling usin after 1,500 m conve segmental lining, t means of deep well
Geoloav:	Buntsandstein (var

riegated sandstone), fault zone with Keuper sandstone formations

of new Erfurt-Leipzig-Halle railway line, ay tunnel

nan rail company], represented by DB Projekt Bau GmbH, eipzig

ngenieurbau AG as technical leader of a joint leader

o September 2012

way tunnels, length: 2 x 6,822 m, internal diameter: 9.60 m; nnel sections, each approximately 75 m long; 13 cross-passages; 2 cal purposes; railway sections in a cutting and on an gths: 1,000 m and 340 m; construction of sonic boom structures tals in order to avoid the sonic boom effect, length: 75 m

sing 2 Mixshields (slurry shields), shield diameter: 10.88 m, version of TBMs from slurry shield mode to hard rock mode; thickness of segments: 45 cm; lowering of groundwater table by ells during tunnelling in open mode (water pressure 6.1 bar)

18|19

Cologne North-South Light Railway, Southern Section Germany

General Data:

Project:	Cologne North-South Light Railway, Southern Section, single-track metro tunnel
Client:	Kölner Verkehrsbetriebe AG, Cologne
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	November 2003 to February 2014
Construction costs:	€ 470 million

Technical Data:

Scope of work: 3,260 m of light railway line with 2 single-track tunnels, total length: 5,400 m, internal diameter: 7.30 m; 7 stations; 1 crossover; 1 weaving section **Construction method:** TBM tunnelling using 2 Mixshields (slurry shields), shield diameter: 8.39 m, segmental lining; use of complex special construction methods, e.g. ground freezing, soil stabilisation (jet grouting and compaction grouting), groundwater lowering, compressed air tunnelling using ground freezing methods and pipe umbrella support systems

Geology: Quaternary sands/gravels

Brandkopf/Lohmeberg Tunnels Germany

General Data:

Project:	German Unity Transpor Nuremberg and Berlin line), Brandkopf Tunnel
Client:	DB Netz AG, Erfurt [Gei
Contractor:	Wayss & Freytag Ingeni
Construction period:	August 2009 to March :
Construction costs:	€80 million

Technical Data:

Scope of Work:	2 tunnels, lengths: 1,49 2 reinforced concrete r
Construction method:	Drill and blast method
Geology:	Lower Rotliegend, volc

rt Project VDE 8, Upgraded and New Railway Lines between (Nuremberg-Ebensfeld-Erfurt-Leipzig/Halle-Berlin railway l - Lohmeberg Tunnel

rman railway company]

ieurbau AG as commercial leader of a joint venture

2012

93 m and 688 m, excavated area: 120 m² - 150 m²; railway bridges, spanning: 150 m and 87 m respectively

l and tunnel excavator, water proofing and inner lining

canic rock, clay, siltstone and sandstone

20 21

New Central Services Tunnel for Brunsbüttel Lock Germany

General Data:

Project:	New central services tunnel for Brunsbüttel lock, tunnel for service lines
Client:	Wasser- und Schifffahrtsamt Brunsbüttel [Water and Shipping Authority]
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	March 2009 to September 2011
Construction costs:	€22 million

Technical Data:

Scope of work:	Construction of a services tunnel (called "Mitteldüker") under the existing double locks at the western end of the Kiel Canal without disrupting lock operations, length: approx. 450 m, clear internal diameter: 2.20 m, tunnel invert approx. 35 m below ground level
C	Dine indung using an AV/N as as machine

Construction method: Pipe jacking using an AVN 2000 machine, construction of shafts using the diaphragm wall method

Gravelly sand with stones Geology:

New Coal-Fired Power Plant in Wilhelmshaven, Cooling Water Pipelines, Lot C121, Germany

General Data:

Project:	New coal-fired power plant in Wilhelmsh cooling water pipelines, Lot C121
Client:	GDF SUEZ Energie Deutschland AG
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	December 2009 - August 2011
Construction costs:	€ 36 million

Technical Data:

Scope of work:	4 cooling water pipelines DN 3400 with a le 1 fish return pipeline DN 1200 with a length start shaft: 30 m x 25 m x 15 m, diaphragm v target shaft: 45 m x 11 m x 15 m, steel girder concrete block; dyke crossing structure: 5 circular cells of se through each circular cell
Construction method:	Pipe jacking using 2 slurry-supported tunne
	Jacking pipes: Composite pipes DN 3400, consisting of a m
Geology:	Silty sand with bands of clay

haven,

length of 300 m each; h of 300 m;

- walls with anchored underwater concrete slab; r shoring with underwater concrete slab and pre-installed lean
- ecant bored piles (internal diameter approx. 7 m), a tunnel drive
- nel boring machines, external diameter: 4.1 m
- reinforced concrete pipe with an integrated HDPE pipe liner

Katzenberg Tunnel Germany

General Data:

Project:	Katzenberg Tunnel, part of the new/upgraded Karlsruhe-Basel railway line, single-track railway tunnel
Client:	DB Netz AG [German rail company], represented by DB Projektbau GmbH, Projektzentrum Karlsruhe
Contractor:	Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture
Construction period:	August 2003 to March 2011
Construction costs:	€ 340 million

Technical Data: Scope of work:

- Twin-bore railway tunnel, each tube 9.4 km long, of which 8,984 m were driven using a TBM, internal diameter: 9.60 m; 2 cut and cover sections, lengths: 286 m and 115 m; 19 cross-passages (18 crosspassages constructed using mining techniques, 1 cross-passage within the sonic boom structures); 2 ventilation shafts, 67 m deep; water pressure up to 9.2 bar; construction of sonic boom structures at all portals to avoid the sonic boom effect
- **Construction method:** TBM tunnelling using 2 EPB shields, shield diameter 11.12 m, operated both in open and in closed mode, segmental lining, 60 cm thick

Munich Metro, Line 3 North, Section 2 Germany

General Data:

Project:	Munich Metro, Line 3 North, Section 2, single-track metro
Client:	Landeshauptstadt München, Baureferat U-Bahn [State Capital of Munich, Building Division - Underground Railway]
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:	September 2004 to February 2010
Construction costs:	€ 81 million

Scope of work:	2 single-track metro tunnels, total length: 2,410 m, internal diameter: 6.30 m; construction of Moosach and Moosacher StMartins-Platz Stations
Construction method:	TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 7.34 m, segmental lining, construction of metro stations using the top-down method
Geology:	Gravel, clay, silt

Stuttgart Metro, Line U6 Fasanenhof Germany

General Data:	
Project:	U6
Client:	Stu
Contractor:	Wa as t
Construction period:	200
Construction costs:	€3

Technical Data:

Scope of work:	Dou sect
Construction method:	Spra tuni supj buil
Geology:	San

6 metro link to Fasanenhof, double-track tunnel

uttgarter Straßenbahnen AG

ayss & Freytag Ingenieurbau AG technical leader of a joint venture

07 to 2010

30 million

uble-track mined tunnel, length: 380 m, excavated cross-tion: 90 m²; 852 m constructed using the cut and cover method

rayed concrete lining (SCL) method with tunnel excavator; nnelling under a high rise building protected by a pipe umbrella pport system, under a four-lane federal road and an industrial lding with a shallow overburden

ndstone of varying strength

26|27

Pipe Jacking under Leipzig Main Station Germany

General Data:

Project:	Pipe jacking under Leipzig Main Station	
Client:	City Tunnel Leipzig Joint Venture, consisting of Wayss & Freytag Ingenieurbau AG and Ed. Züblin AG	
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture	
Construction period:	struction period: October 2006 to July 2007	
Construction costs:	€2.8 million	

Technical Data:

Scope of work:	Construction of two pilot tunnels in the course of the construction of Leipzig City Tunnel, Section C, length: 110 m and 145 m, internal diameter: 2.40 m
Construction method:	Pipe jacking with a slurry-supported tunnel face; AVN 2000 tunnelling machine, external diameter: 2,400 mm; enlarged to 3,000 mm; wall thickness of jacking pipes: 30 cm, standard length: 3 m; max. settlement 3 mm
Geology:	Sand, gravel

Dortmund Ostentor Light Railway Germany

General Data:

Project:	Dortmund Ostentor Light Railway Line III, O
Client:	Stadt Dortmund, Stadtbahnbauamt [City of Dortmund, Light Rail Construction
Contractor:	Wayss & Freytag Ingenieurbau AG as techn
Construction period:	March 2002 to December 2005
Construction costs:	€40 million

Technical Data:

Scope of work:

Start shaft
600 m single-track cross-section
200 m double-track cross-section
70 m enlargement section
30 m branch-off section, three-bay
100 m station tubes
80 m station section, three-bay

umbrella support system; cut and cover method: western and eastern railhead of the stations with accesses; 100 m closed ramp as a double-track rectangular cross-section; 120 m open ramp as a retained cut

Geology:

Marl stone, weathering zone of sandy, gravelly and silty clays

Contract Section S10.1, 2nd Stage

n Authority]

nical leader of a joint venture

diameter: 15 m, depth: 22 m excavated area = 36 m² excavated area = 70 m^2 excavated area = $36 \text{ m}^2 - 60 \text{ m}^2$ excavated area = 185 m^2 excavated area = 62 m^2

excavated area = 138 m²

Construction method: Sprayed concrete lining (SCL) method with tunnel excavator, partly with pipe

Reconstruction of suburban train station under Dortmund Main Station Germany

General Data:

Project:	Stadtbahn Dortmund, Suburban railway li railway Dortmund Main Station"
Client:	Stadt (Municipality) Dortmund (Tiefbauar
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	2014 to 2017
Net construction costs:	€ 10.2 million

Technical Data:

Project description:	Conversion and extension of the suburbar platforms across the DB (German Railway Replacement of bored pile walls and outer connected monolithically to the existing s extension.
Construction method:	Mining technique (conventional method) jacking with forward shield; diameter 1,60 concrete Enlargement using conventional methods with SCL lining, max. depth of advance 1.0
Geology:	Coarse clay with peat inclusions, marl, are

Rennsteig Tunnel

Germany

General Data:

Project:	Rennsteig Tunnel, twin-tube, two-lane motorway tunnel on the BAB A 71
Client:	DEGES Deutsche Einheit Fernstraßenplanungs- und -bau GmbH, Berlin
Contractor:	Wayss & Freytag Ingenieurbau AG as commercial leader of a joint venture
Construction period:	1998 - 2003
Construction costs:	€ 192 million

Technical Data:

- Scope of work:2 x 7.9 km, standard cross-section: 80 m², emergency lay-bys: 120 m²;
23 cross-passages, 2 central ventilation stations with exhaust shaft; 2 air supply adits;
tunnelling under a 100-year old railway tunnel with a small clearance between the tunnels
- **Construction method:** Drill and blast method, sprayed concrete lining (SCL) method
- Geology: Porphyry, conglomerates

line I, Lot 20 - reconstruction and extension of suburban

mt - Building authority for civil engineering)

n railway station at main station, enlargement of the /) track field, tunnel ceiling cover 2.5 m er walls of the existing structure by a beam-column system structure as well as to the inner lining of the platform

) protected by a pipe umbrella, length 46 m, manned pipe oo mm two start shafts Inner lining of watertight reinforced

s in two partial cross-sections (roof section and then base) o m, jet underpinning approx. every 7.0 m

Coarse clay with peat inclusions, marl, area with high probability of explosive ordnance

Liefkenshoek Rail Link

Antwerp, Belgium

General Data:

Project:	Liefkenshoek Rail Link, double-track railway tunnel
Client:	Infrabel
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	November 2008 to mid-2013
Construction costs:	€ 693 million

Scope of work:	Construction of a double-track railway line, length: 16.2 km; construction of 4.8 km of embankment fills and 4.3 km of open and covered cuts; construction of 2 single-track TBM tunnels, length: 2 x 6 km, internal diameter: 7.30 m; refurbishment of existing Beveren-Tunnel, length: 1.2 km; various civil engineering structures
Construction method:	Tunnel: TBM tunnelling using 2 Hydroshields (slurry shields), shield diameter: 8.32 m, segmental lining
Geology:	Quaternary sand / Boom clay

Diabolo Project, single-track railway tunne
Northern Diabolo nv (PPP company for the Via-Zaventem nv (PPP company for the roa
Wayss & Freytag Ingenieurbau AG in a joint
October 2007 to February 2012
€ 333 million

Technical Data:

Scope of work:

Conversion of the dead-end station at Zaventem Airport, Brussels, into a through station; connection of the station to the new high-speed railway line from Brussels to Antwerp by means of approx. 5,600 m of tunnel: 2 TBM-driven tunnels, length: approx. 1.1 km each, internal diameter 7.30 m approx. 1.1 km of tunnel built using the top-down method approx. 2.3 km of cut and cover tunnel construction of additional accesses and exits for the E19 motorway; refurbishment of an existing motorway bridge and addition of a new bridge for cyclists; construction of a fly-over

Construction method: TBM tunnelling using a Mixshield (slurry shield), shield diameter: 8.27 m, segmental lining, 25 cm thick; top-down method; cut and cover method

Sand with beds of sandstone in the rock area

e railway tunnel)

ad construction part)

t venture

Schuman-Josaphat Tunnel Belgium

General Data:

Project:	Schuman-Josaphat Tunnel, double-track railway tunnel
Client:	Departement Mobiliteit en Vervoer [Belgian Department of Transport]
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	October 2008 to June 2015
Construction costs:	€ 217 million

Technical Data:

Scope of work:	Structural modification of Schuman train and metro station; construction of double-track Schuman-Josaphat Tunnel, box section, length: 1,400 m, width: approx. 10.85 m, height: 6.86 m; pipe jacking to build a pipe umbrella support system, lengths of pipe jacking: 703 m with an internal diameter of 3.00 m 1,700 m with an internal diameter of 1.80 m 550 m with an internal diameter of 1.40 m
Construction method:	Mining techniques for most of the tunnel, partly under the protection of manually constructed underpinnings, partly by a pipe umbrella support system constructed

constructed underpinnings, partly by a pipe umbrella support system constructed using the pipe jacking method; pipe jacking using an AVN 1800 machine

Geology:

Sand with beds of sandstone

Antwerp North-South Link (ASDAM) Belgium

General Data: Project:

	single-track railwa
Client:	NMBS CCE Strateg represented by: TL
Contractor:	Wayss & Freytag In in a joint venture
Construction period:	May 2001 to March
Construction costs:	€ 81 million

Technical Data:

Scope of work:	Construction of two structural modifica construction of a p 3 emergency exits; 2 cross-passages
Construction method: Geology:	TBM tunnelling usi

Antwerp North-South Link (ASDAM), single-track railway tunnel

gie Ontwikkeling (Belgian Railway) UC RAIL NV, Brussels, Belgium

ngenieurbau AG

h 2005

vo tunnels, length: 2,456 m (2 x 1,228 m), internal diameter: 7.30 m; ation of the existing accesses; passageway under the main railway station;

ing a Mixshield (slurry shield), shield diameter: 8.27 m

e 1

Crossrail Western Tunnels and Bond Street and Tottenham Court Road Stations, London United Kingdom

General Data:

LIDSSGAI

Project:	Crossrail Western Tunnels and Bond Street and Tottenham Court Road Stations, single-track railway
Client:	Crossrail Limited, London, UK
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	February 2011 to August 2018
Construction costs:	€ 1,191 million

Technical Data:

Scope of work.	
Contract C300:	Construction of 2 parallel, single- track railway tunnels, length: 5.9 km each, internal diameter: 6.20 m; 6 cross-passages; construction of Fisher Street Shaft and Crossover
Contract C410:	Construction of Bond Street and Tottenham Court Stations
Contract C435:	Construction of Farringdon Station
Construction method:	Construction of the tunnels using 2
	EPB shields, shield diameter: 7.10 m; construction of stations using the sprayed concrete lining (SCL) method; construction of Fisher Street Shaft and Crossover using NATM techniques with a sprayed concrete inner lining

..

Glendoe Recovery Project United Kingdom

General Data:	
Project:	Glendoe Recovery area, an access tu tailrace tunnel
Client:	Scottish Southern
Contractor:	Wayss & Freytag I in a joint venture
Construction period:	January 2010 to M
Construction costs:	€68 million

Technical Data:

Scope of work:	Bypass tunnel, 605 with a gradient of circular cross-secti access tunnel, 550 exploration boring shotcrete inner lini partial removal of closing of the colla
Construction method:	Mining techniques and sprayed concre classification of tur round: 1.5 m - 4 m
Geology:	Quarzite with slate Shear Zone with hi place in this zone).

y Project - construction of a bypass tunnel around a collapse innel to the headrace tunnel, repair works in the headrace and

n Energy (SSE)

Ingenieurbau AG

1arch 2012

5 m, excavated cross-section: 28 m², as a D-shaped profile 12%, access via existing headrace tunnel (length: 2 km, 19 m² tion, 12% gradient);

m, excavated cross-section 28 m², as a D-shaped profile; gs from above ground to detect cavities in the rock;

ings in the bypass tunnel and in places in the headrace tunnel; the flushed out collapse material from the headrace tunnel; apse area and the access tunnel by means of a concrete seal

s: drill and blast method in combination with tunnel excavator rete lining (SCL),

nnelling operations according to the Q-System, advance per

e inclusions, uniaxial strength approx. 80 MPa - 120 MPa, Eilrig ighly destabilized zones (the collapse of the TBM tunnel took

Channel Tunnel Rail Link United Kingdom

General Data:

Project:	Channel Tunnel Rail Link, Contract C250, single-track railway tunnel
Client:	Union Railways (North) Ltd., London, UK
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	February 2001 to September 2004
Construction costs:	€ 217 million

Technical Data:

Scope of work:	2 parallel railway tunnels, length: 5.3 km each, internal diameter: 7.15 m; 7 cross-passages; 1 ventilation shaft
Construction method:	TBM tunnelling using 2 EPB shields, shield diameter: 8.15 m; steel fibre reinforced segmental lining; both tunnels driven simultaneously from a retained cut structure
Geology:	Sand, London Clay, silt, gravel

Corrib Pipeline Tunnel Ireland

General Data:

Project:	Corrib Pipeline Tunnel, utility tunnel for a gas pipeline
Client:	Shell E&P Ireland Limited, Dublin, Ireland
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	November 2010 to February 2015
Construction costs:	€ 125 million

Technical Data:

Scope of work:	Tunnel for a gas pipeline, length: 4,900 m, diameter: 3.50 m; installation of the gas pipeline (diameter 5 2 water pipelines (diameter 25 cm) and sev into the tunnel using the floating method; complete grout backfilling of the tunnel at he pipelines and cables
Construction method:	TBM tunnelling using a Hydroshield (slurry shield diameter: 4.24 m;

Geology:

Quaternary sands, gravels, gneiss

, internal

50 cm), everal control cables

after installation of

y shield),

steel fibre reinforced segmental lining, wall thickness 25 cm

Stafelter Tunnel

General Data:

Project:	Stafelter Berg Tunnel twin-tube, two-lane motorway tunnel
Client:	Grand-Duché de Luxembourg - Ministère des Travaux Publics [Grand Duchy of Luxembourg - Ministry of Public Works] represented by Administration des Ponts et Chaussées, Luxembourg [Bridge and Road Department]
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:	September 2008 to August 2012
Construction costs:	€100 million

Technical Data:

Scope of work:	2 double-lane motorway tunnels, each with a length of 1,850 m (excavated area: 74 m ² - 114 m ²), of which 1,650 m are constructed using mining techniques and 200 m using the cut and cover method	
Construction method:	Drill and blast method in combination with tunnel excavator, construction of a pipe umbrella support system in some areas with shallow soil cover	
Geology:	Luxembourg Sandstone	

Grouft Tunnel

General Data:

Project:

Project:	Grouft Tunnel, Luxembourg; twin-tube, two-lane motorway tunnel
Client:	Grand-Duché de Luxembourg - Ministère [Grand Duchy of Luxembourg - Ministry o represented by Administration des Ponts Luxembourg [Bridge and Road Departme
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:	February 2005 to August 2009
Construction costs:	€ 171 million

Technical Data:

Scope of work:

1 double-lane tunnel, 3 km, excavated cross
1 triple-lane tunnel, 2.9 km, excavated cross
1 cavern with ventilation shaft;
10 cross-passages, of which 4 are accessibl
1 rescue tunnel, length: 40 m

Construction method: Drill and blast method in combination with tunnel

excavator, sprayed concrete lining (SCL) method

Geology:

Marl, sandstone, Keuper

e des Travaux Publics of Public Works] s et Chaussées, eent]

ss-section: 96 m²; ss-section: 174 m²;

ole by vehicles;

SMART Tunnel Malaysia

General Data:

Project:	Stormwater Management and Road Tunnel (SMART) Project, flood relief and road tunnel in the city centre of Kuala Lumpur
Client:	MMC Eng. Group Bhd./Gamuda Eng. Sdn. Joint Ventur Kuala Lumpur, Malaysia
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	January 2003 to January 2006
Construction costs:	€ 83 million

Technical Data:

Scope of work:	Combined flood relief and road tunnel, length: 5,230 m, internal diameter: 11.83 m
Construction method:	TBM tunnelling using a Mixshield (slurry shield), shield diameter: 13.21 m, segmental lining
Geology:	Sand, gravel, limestone

Sluiskil Canal Crossing The Netherlands

General Data:

deneral Data.	
Project:	Sluiskil Canal Crossing, twin-bore road tunnel under the Ghent-Terr
Client:	Province of Zeeland [Provincie Zeeland], represented by BV Kanaal-kruising Sluiskil
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	October 2010 to May 2015
Construction costs:	€ 233 million
Technical Data:	
Scope of work:	2 parallel tunnel tubes, length: 1.15 km each 4 cross-passages; 2 ramp structures serving as start and/or ta

Construction method: TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 11.32 m, reinforced concrete segmental lining, wall thickness: 45 cm Geology:

Sand, silt, Boom Clay, sand containing glauconite

Ems-Dollard Crossing The Netherlands

General Data: Project:	Ems-Dollard Crossing between Germany and the Netherlands, tunnel for a gas pipeline	Technical Data: Scope of work:	Tunnel for a gas pipeline, length: approx. 4,050 m, internal diameter: 3.0 m;
Client:	Nederlandse Gasunie		installation of the gas pipeline in the
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture		tunnel using the floating method and subsequent backfill grouting of the tunnel:
Construction period:	June 2008 to September 2010		extensive soil investigation
Construction costs:	€ 45.7 million	Construction method:	TBM tunnelling using a Hydroshield (slurry shield), shield diameter: 3.6 m; steel fibre reinforced segmental lining, wall thickness 25 cm
		Geology:	Potklei (local type of clay), sands, clays

neuzen Canal

, internal diameter: 10.10 m;

2 ramp structures serving as start and/or target shafts;
2 intersections - East and West - consisting of bridge structures with 2 roundabouts each

Hubertus Tunnel The Netherlands

General Data:

Project:	Hubertus Tunnel, road tunnel
Client:	emeente Den Haag [Municipality of The Hague], the Netherlands
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	September 2004 to September 2008
Construction costs:	€109 million

Technical Data:

Scope of work:	2 double-lane tunnels, each 1,490 m long, internal diameter: 9.40 m; 2 ramp structures; 5 cross-passages
Construction method:	TBM tunnelling using a Mixshield (slurry shield), external diameter of TBM: 10.50 m; reinforced concrete segmental lining
Geology:	Silty fine sands to medium dense beach sands

Westerschelde Tunnel The Netherlands

General Data:

Project:	Westerschelde Tunnel, road tunnel
Client:	Ministerie van Verkeer en Waterstaat, Di [Dutch Ministry of Transport, Public Wor
Contractor:	Wayss & Freytag Ingenieurbau AG in a joi
Construction period:	January 1997 to March 2003
Construction costs:	€690 million

Technical Data: Scope of work:

Scope of work:	2 parallel tunnel tubes, Length: 2 x 6,600 m, Internal diameter: 10.10 m
	Ramp structures, toll stations and road co including various civil engineering structu
Construction method:	TBM tunnelling using 2 Mixshields (slurry s shield diameter: 11.34 m, segmental lining
Geology:	Sand, Boom Clay

irectoraat-Generaal Rijskwaterstaat rks and Water Management]

oint venture

onnections ures shields),

Koralm Tunnel KAT 1 ^{Austria}

General Data:

Project:	Koralm Railway Line between Graz and Klagenfurt Koralm Tunnel, Contract Section KAT 1 - km 37+700 - km 43-150 - B 1961
Client:	ÖBB Infrastruktur Bau AG, Graz [National railway of Austria]
Contractor:	Wayss & Freytag Ingenieurbau AGas technical leader of a joint venture
Construction period:	2009 to 2013
Construction costs:	€ 90 million

Technical Data:

Scope of work:Two single-track railway tunnels, each 1,961 m long, excavated area: 65 m² - 80 m²;
280 m of double-track tunnel tubes with a partition wall constructed by the cut
and cover method; approx. 3 km-long open-cut railway line including earthworks
and civil engineering works (flyovers, wildlife bridges, noise barriers); technical
building including an emergency basin and retaining walls at the tunnel portal

Construction method: Drill and blast method and tunnel excavator

Geology: Neogene (Miocene to Quaternary), sediments (loose rock - silt - sand) overlying poorly consolidated rock (siltstone and sandstone)

Hengsberg Tunnel ^{Austria}

General Data:

Project:	Koralmbahn (railway) (Lot 3 – Hengsberg Tuni
Client:	ÖBB Infrastruktur Bau
Contractor:	Wayss & Freytag Ingen
Construction period:	2007 to 2010
Construction costs:	€76.8 million

Technical Data:

Project description:	double-track railway tu
	L=1035 m, A =110-125 m method L=210 m, 3 emo earthworks, drainage w retention areas
Objects:	1 underpass structure, 1
Construction method:	closed construction me blast, cut and cover and
Geology:	Quaternary: Sand, grav

Koralmbahn (railway) Graz–Klagenfurt B 1581 Lot 3 – Hengsberg Tunnel,

AG

nieurbau AG as technical leader of a joint venture

Project description:double-track railway tunnel KL=1,695 m, closed construction method
L=1035 m, A =110-125 m², cut and cover method L=400m, top-down
method L=210 m, 3 emergency exits Open land section, L=5,898 m,
earthworks, drainage works, noise protection, accompanying paths,

ı stormwater bridge

ethod: combination of tunnel excavator and drill and d top-down method with separate bored pile sheeting

vel; Neogene: sandstone, silt / clay/ marl- rock, silt

Lilienberg Tunnel ^{Austria}

General Data:

Project:

Project:	Völkermarkt Bypass, two-lane road tun
Client:	Land Kärnten, Abteilung 17 - Brücken ur [State of Carinthia, Division 17 - Bridges
Contractor:	Wayss & Freytag Ingenieurbau AG in a j
Construction period:	2007 to 2009
Construction costs:	€ 23 million

Technical Data:

Project description:	two-lane road tunnel, L = 1,100 m, A = 85 m², 1 breakdown bay, 2 escape
Construction method:	combination of tunnel excavator and
Geology:	Phyllite

Roppen Tunnel ^{Austria}

General Data:

Project:	Roppen Tunnel, Second Tube, two-lane motorway tunnel and adaptation of first tube
Client:	ASFINAG Baumanagement GmbH, Vienna
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	2006 to 2010

Construction costs: € 80 million

Technical Data:

Scope of work:	Length: 5.1 km, excavated cross-section: 80 m² - 95 m²; 7 emergency lay-bys, 23 cross-passages
Construction method:	Sprayed concrete lining (SCL) method with drill and blast excavation
Geology:	Dolomite (dolomia principale)

nnel nd Tunnels s and Tunnels] joint venture

tunnels L= 600 m, A = 25 m^2 drill and blast

Henndorf Bypass ^{Austria}

General Data:

Project:	B 1 Federal Road Wiener Straße, Henndorf Bypass, two-lane road tunnel
Client:	Land Salzburg, Landesbaudirektion [State of Salzburg, State Building Authority]
Contractor:	Wayss & Freytag Ingenieurbau AG as technical leader of a joint venture
Construction period:	2006 to 2009
Construction costs:	€ 38 million

Technical Data:

Scope of work:	Length: 2.2 km, excavated cross-section: 80 m ² - 100 m ² ; 2 parking bays, area: 125 m ² ; 6 cross-passages to an existing exploration tunnel; ventilation shaft, diameter: 4m, depth: 38 m; service buildings and emergency exit shafts
Construction method:	Drill and blast method in combination with tunnel excavator, length: 1.4 km; cut and cover method: 732 m

Geology: Ground moraine and Flysch sedimentary rock

Vienna Metro - U2/2 Taborstrasse ^{Austria}

General Data:

oject:	Metro line 2, Section 2, Tabors
ent:	Wiener Linien GmbH & Co KG
ntractor:	Wayss & Freytag Ingenieurbau in a joint venture
nstruction period:	2002 to 2007
nstruction costs:	€110 million

Technical Data:

ope of work:	Length: 2 x 1.1 km, excavated c 2 station tubes, excavated cross access and supply shafts
onstruction method:	Tunnel excavator: advance under the protection
	Dewatering: 270 wells up to a depth of 40 n maximum output 285 l/s, tota
eology:	Tertiary silts and sands, groun

strasse

J AG

cross-section: 39 m² - 44 m²; oss-section: 65 m²;

of jet-grouted canopies and jet-grouted bulkheads

m, electronic monitoring and control system, al output 25 million cubic metres of ground water

ndwater

Klaus Tunnel String 2nd Tubes Lots 4+5 Austria

General Data:

Project:	A9 Phyrn Motorway full extension of 2nd tube Lot 5 "Sperring" and "Falkenstein" Tunnel, Lot 4 "Klauser" and "Traunfried" Tunnel
Client:	Asfinag Baumanagement GmbH
Contractor:	Wayss & Freytag Ingenieurbau AG as commercial leader of a Joint venture
Construction period:	2014 to 2017
Construction costs:	€ 34.99+31.29 million

Technical Data:

Project description:	double-lane motorway tunnel Lot 5 "Sperring" Tunnel L=2,894 m, enlargement to full cross- section, face/floor, A = 30– 60 m ² 10 cross-passages, 2 breakdown bays, Falkenstein tunnel L=752 m, A = 70– 80 m ² 2 cross-passages Lot 4 Klauser tunnel 2,166 m of which 1,900m to be enlarged to full cross-section, face/floor A = 30– 60 m ² , L=160 m complete excavation A = 75– 85 m ² , 8 cross-passages, 2 breakdown bays, Traunfried Tunnel L=462m, A = 75– 85 m ² 2 service buildings and water tank for firefighting purposes
Construction method.	rill and blast method and tunnel excavator

rill and blast method and tunnel excavator Construction method:

Firm to slightly weathered main dolomite, tectonically strongly stressed limestone with all Geology: grades of weathering, slightly weathered to bedded Wetterstein dolomite, loose soil layers (unconsolidated colluvium)

Gleinalm Tunnel 2nd tube Austria

Allgemeine Daten:

Project:	Phyrn motorway full extension 2nd tube
Client:	Asfinag Baumanagement GmbH
Contractor:	Wayss & Freytag Ingenieurbau AG of a jo
Construction period:	2013 to 2017
Construction costs:	€99.4 million

Technical Data:

Project description:

double-lane motorway tunnel L=8,047 m, A = 80– 90 m² 34 cross-passages L=840m A = 15– 45 m², 8 breakdown and 7 ventilation bays A = 110+ 120 m², 2 portal galleries and ventilation towers

Construction method: drill and blast

Geology:

Gneiss, amphibolite as well as slate in massive, plate-like to slate-like form

"Gleinalm" Tunnel

oint venture

Koralm Tunnel Paierdorf Ventilation Structure Austria

General Data:

Project:	Koralmbahn (railway) Graz–Klagenfurt Koralm Tunnel Lot Paierdorf Ventilation Structure – B 11968
Client:	ÖBB-Infrastruktur Bau AG
Contractor:	Wayss & Freytag Ingenieurbau AG
Construction period:	2012 to 2013
Construction costs:	€7.4 million

Technical Data:

construction of a ventilation building consisting of North tube access cavern L=18 m, A = 120 m² and enlargement area L=90m, A = 114 m², ventilation tunnel North L=93 m Project description: gradient 14°, A = 36 m², Enlargement of south tube from existing tube to complete cross-section L=250 m, ventilation shaft interior construction H=117 m, maintenance of exploration structure during the construction period.

Construction method: drill and blast method and tunnel excavator, SCL inner lining, slip-form construction

Geology: Neogene (Miocene) consisting of coarse clay, clayey, sandy, sand silty

Gemeinschaftskraftwerk Inn (GKI) (Joint Power Station at the River Inn) Austria

General Data:

Project:	Gemeinschaftskraftwerk Inn (GKI) Prutz/Ried
Client:	Tiroler Wasserkraft (Tirolean Hydropower)/EKW-OEE/Verbund
Contractor:	Wayss & Freytag Ingenieurbau AG, Southern Division in a joint venture (GKI Prutz/Ried JV)
Construction period:	2014 to 2018
Construction costs:	€ 56 million

Technical Data:

Project description:	Length and Cross-section: power descent, inclined shaft approx. 400 m; gradient less than 31% Surge chamber plumb vertical shaft Excavation and securing works, T=100m, Ø 15 m Concrete works vertical shaft, inner Ø 14 m Return Drive (in opposite direction) approx. 1,000 m Concrete works return drive inner lining bottom and roof Access tunnel, caverns
Construction method:	Drill and blast method and tunnel excavator
Geology:	Dark limestone phyllite

Eppenberg Tunnel Switzerland

General Data:

	Eppenberg Tunnel Project, Part 1 "Tunnel ir method)" Railway tunnel, double track For and Olten
	SBB Infrastruktur
tor:	Wayss & Freytag Ingenieurbau AG in a join
ction period:	July 2015 to July 2019
ction costs:	€80.8 million

Technical Data:

Project description:

1 double-track railway tunnel, total length 2,613 m, of which a first part of approx. 80 m is driven in mining technique, 1,820 m in hard rock with TBM and 713 m in soft rock Inner diameter tunnel 11.19 m, drilling diameter 12,79 m 3 rescue and escape tunnels with the respective shafts As well as 5 bays for technical purposes in the tunnel

Construction method: TBM-driven tunnel with convertible TBM in hard rock as well as in soft rock(slurry mode), shield diameter 12.75 m – double lining with tunnel segments as outer lining and in-situ concrete lining as inner lining with external sealing with a thickness of 30 cm each. The rescue tunnels are constructed in mining technique.

Geology:

Effingen beds (claystone partly cemented) lower freshwater Molasse Gravel in soft rock sections

in mining technique (conventional ur-track extension between Aarau

it venture

Weinberg Tunnel, Sections 3.1 and 3.2 Switzerland

General Data:

Project:	Weinberg Tunnel, Sections 3.1 and 3.2, Zurich, as part of the Zurich Main Station-Altstetten-Oerlikon Diameter Line
Client:	Schweizerische Bundesbahnen SBB [Swiss Federal Railways] represented by Infrastruktur - Projekt Management Durchmesserlinie
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	September 2007 to May 2014
Construction costs:	€ 246 million

Technical Data:

Scope of work:

Section 3.1:	Tunnelling under the southern part of Zurich Main Station
	and construction of a shaft in front of the southern part,
	220 running metres of longitudinal tunnels (excavated area: approx. 36 m ²) and 390 running metres of
	transverse tunnels (excavated area: 14 m ² - 17 m ²) as auxiliary tunnels for construction work using the top-
	down method under the southern part

Section 3.2: Double-track railway tunnel (main tunnel) and parallel escape and rescue tunnel, total length of main tunnel: 4,537 m, of which 4,382 m are shield-driven, internal diameter: 9.74 m, length of escape and rescue tunnel: 4,460 m, internal diameter: 4.35 m; 8 cross-passages; 2 emergency exits; 105 m of conventional tunnelling between the TBM launching chamber and the cut and cover tunnel in Oerlikon; Brunnenhof start shaft (diameter: approx. 23 m, depth approx. 37 m); 8 recesses for technical equipment inside the tunnel

Construction method:

Section 3.1:	Auxiliary tunnels: tunnel excavator with pipe and spile canopy support systems
Section 3.2:	Main tunnel: TBM tunnelling using a convertible TBM, operated both in hard rock mode (4,105 m) and in

slurry mode (277 m), shield diameter: 11,23 m; double lining: segmental lining with in-situ concrete inner lining with external water proofing; Escape and rescue tunnel: 4,390 m constructed by a Gripper-TBM and 70 m using a roadheader, TBM diameter: 4.75 m, lining: shotcrete with wire mesh reinforcement and anchors

Geology: Section 3.1: Ground moraine (glacial gravels) Section 3.2: Rock (molasse) and loose rock (gravel, lake sediments)

Limmern Access Tunnel I Switzerland

General Data:

Project:	Limmern Access Tunnel I, Section A1, transportation tunnel to the machine cave extension to Limmern Pumped Storage Po
Client:	Kraftwerke Linth-Limmern AG (KLL)
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	October 2009 to May 2013
Construction costs:	€89 million

Technical Data:

Scope of work:	Length of access tunnel (inclined tunnel): gradient: 24%, internal diameter: min. 7.30 m;
	Portal structure / cut and cover tunnel, len horizontal access tunnel to valley station, l cavern of valley station, length: 35 m, exca
Construction method:	Inclined tunnel: tunnelling using a Gripper bore diameter of TBM: 8.03 m, lining: anchors, wire mesh reinforcement a access tunnel to valley station: drill and bla cavern of valley station: drill and blast met
Geology:	Quintner limestone with karstic features

ern of the new ower Plant

3,762 m,

ngth: 18 m; length: 219 m, excavated cross-section: approx. 70 m² avation volume: 9,500 m³

er-TBM,

and 2 layers of shotcrete; last method with sprayed concrete support; thod

Tridel Tunnel Switzerland

General Data:

Project:	Tridel Tunnel in Lausanne, Switzerland, single-track railway tunnel
Client:	Tridel SA, Lausanne, Switzerland
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	2004 to 2006
Construction costs:	€ 35 million

Technical Data:

Scope of work:	Length: 3.6 km, excavated area: 40 m²
Construction method:	Excavation using a roadheader with pneumatic-tired material transport; single-pass lining, with anchored shotcrete, partly with arches
Geology:	Molasse, partly eroded

Uetliberg Tunnel Switzerland

General Data:

Project:

Project:	Uetliberg Motorway Tunnel, two parallel tunnels, each for three lanes
Client:	Baudirekton Kanton Zürich [Building Authority of the Canton of Zurich]
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	2000 to 2007
Construction costs:	€ 340 million
Technical Data:	
Scope of work:	2 tunnels, each 4.4 km long, excavated area: 160 m ²

Technical Data

Scope of work:

Construction method: Soft ground tunnelling: approx. 1.6 km in 7 sections; drill and blast tunnelling: approx. 1.2 km in 3 sections; pilot TBM (5 m diameter): 5.6 km; tunnel bore extender TBE (14.40 m diameter): 5.6 km; cut and cover method: approx. o.4 km

Geology:

Molasse (partly eroded at the end of the tunnels) and moraine

CERN Nuclear Research Centre, Geneva Switzerland

General Data:

Project:	Complete remodelling of the parti
Client:	CERN - European Organization for N
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	1998 to 2003
Construction costs:	€70 million

Technical Data:

Scope of work:	3 shafts, depth: 100 m, max. diame 2 caverns with a volume of 70,000 100,000 m ³ respectively; various s
Construction method:	Sprayed concrete lining method w in-situ concrete inner lining
Geology:	Molasse

Oenzberg Tunnel Switzerland

General Data:

Project:	Oenzberg Tunnel, double-track railway tunnel, new railway line between Zurich and Bern (200 km/h)
Client:	SBB Project Group "Neubaustrecke Mattstetten - Rothrist" [Swiss Federal Railways]
Contractor:	Wayss & Freytag Ingenieurbau AG in a joint venture
Construction period:	1999 to 2003
Construction costs:	€150 million

Technical Data:

Scope of work:	1 double-track railway tunnel (Oenzberg Tunnel), total length: 3,161 m, of which 2,265 m were driven using a TBM, internal diameter: 10.84 m; 2 single-track branch-off tunnels (Wolfacher Tunnels), lengths: 754 m, excavated cross-section: 80 m ²
Construction method:	Oenzberg Tunnel: TBM-tunnelling using a convertible TBM: 1,925 m in hard rock mode, 340 m in slurry shield mode, shield diameter: 12.34 m, double lining consisting of reinforced concrete segments and an in-situ concrete inner lining with external water proofing; branch-off tunnels (Wolfacher Tunnels): roadheader tunnelling: 900 m, sprayed concrete lining (SCL) method; cut and cover method = 0.1 km

Geology:

Molasse, moraine

ticle accelerator Nuclear Research

neter: 25 m; o m³ and smaller tunnels

with excavator and chisel,

Singapore Metro, North-East Line, Contract C704

General Data:

Project:	Singapore Metro, North East Line, Contract C704, single-track metro tunnel
Client:	Land Transport Authority of Singapore (LTA)
Contractor:	Wayss & Freytag AG as technical and commercial leader of a joint venture
Construction period:	1997 to 2002
Construction costs:	€177 million

Technical Data:

Scope of work:	2 tunnel tubes, length: 2,550 m each, internal diameter: 5.80 m
	6 cross-passages at intervals of 250 m
	2 stations: Serangoon Station, 205 m long, Woodleigh Station, 210 m long, built in an open excavation supported by shoring (soldier piles and timber lagging), designed as civil defence shelters, turn-key
	1 viaduct with 2 separate superstructures with 2 x 3 lanes, length: 1,750 m, width: 2 x 11.40 m, using overhead launching system and the free cantilever method for large-span areas
	Contiguous bored pile walls for Braddell Bartley Underpass, approx. 1 km long, and soldier piles and timber lagging for the excavation of the Upper Paya Lebar Underpass box structure, extensive roadworks 3 pedestrian bridges 1 switching substation
Construction method:	TBM tunnelling using 2 EPB shields, shield diameter: 6.56 m, cross-passages built using NATM techniques with an in-situ concrete inner lining
Geology:	Sand, clay, granite

Project References

CONSTRUCTION PERIOD	PROJECT AND CLIENT	SCOPE OF WORKS	CONSTRUCTION METHOD
2015/2019	Eppenberg Tunnel, Subproject 1 (CH); SBB Infrastruktur	Railway tunnel, double-track, l = 2,613 m, shield- driven, shield diameter 12.75 m, 3 escape and rescue tunnels and associated shafts, 5 niches for technical installations in the tunnel, double tunnel lining: segmental lining and in-situ concrete inner lining, each 30 cm thick	Hard Rock TBM and Hydroshield
2015/2017	Darmsheim Northern Bypass, L1182 Darmsheim Tunnel (D); Federal State of Baden-Württemberg, represented by Regierungspräsidium Stuttgart	Double-lane road tunnel, length 460 m	Drill and blast method
2015/2016	Europagarten Tunnel, Frankfurt am Main (D); aurelis Asset GmbH, represented by aurelis Real Estate GmbH & Co. KG, Eschborn	Road tunnel with three tubes, length 533 m, of which 395 m are a covered over section constructed using the cut and cover method	Cut and cover method
2014/2018	Gemeinschaftskraftwerk Inn hydroelectric power plant (A); Tiroler Wasserkraft/EKW-OEE/Verbund	Headrace, inclined shaft, approx. 400 m, incline less 31%, excavation and support work, d = 100 m, tunnel drive from the opposite direction approx. 1,000 m access tunnel, caverns	Drill and blast method and tunnel excavator
2014/2017	Renovation of light railway system under Dortmund Central Station, Section 20 (D); Stadt Dortmund (Tiefbauamt)	Renovation and extension of light railway system under central railway station, construction of mined tunnel pipe roof support system, manned pipe jacking using an open hooded shield, diameter 1,600 mm	Tunnel excavator
2014/2017	A9 Pyhrn Motorway, Construction of Second Tubes, Section 5 Spering and Falkenstein Tunnels, Section 4 Klauser and Traunfried Tunnels (A); ASFINAG Baumanagement gmbH	Double-lane motorways tunnels: Spering Tunnel: L = 2,894 m, 10 cross-passages, 2 emergency lay-bys; Falkenstein Tunnel: L = 752 m, 2 cross-passages; Klauser Tunnel: L = 2,166m, 8 cross-passages, 2 emergency lay-bys; Traunfried Tunnel: L = 462 m; 2 operational buildings and fire water tanks	Drill and blast method and tunnel excavator
2013/2017	Pyhrn Motorway, Construction of Second Tube for Gleinalm Tunnel (A); ASFINAG Baumanagement GmbH	Double-lane motorway tunnel, L = 8,047 m, 34 cross passages, L = 840 m, 8 emergency lay-bys and 7 ventilation bays, area = 110 + 120 m ² ; 2 portal galleries and ventilation towers	Drill and blast method
2013/2016	Widderstall Tunnel, New Stuttgart-Augsburg Railway Line, Wendlingen-Ulm-Section, PFA Albhöhe, VE: 230-1 (D); DB Projekt Stuttgart-Ulm GmbH	Double-track railway tunnel, length 962 m	Cut and cover method
2013/2014	Seepage Water Tunnel at Sylvenstein Reservoir near Lenggries, Germany; Wasserwirtschaftsamt Weilheim for Freestate Bavaria	Lot 1: lenght 80 m, Access shaft and start cavern 1,000 m ³ , 2 Pressure bulkheads; Lot 2: Drive reception shaft, D = 7 m and launching cavern L = 15 m; Lot 3: water seepage tunnel, D = 3,0 m, L = approx. 160 m	Drill and blast method TBM
2012/2018	Stuttgart 21, PFS 1,5, Lot 3 railway connection from Stuttgart Main Station to Bad Cannstatt (Germany); DB Netz AG, represented by DB Projektbau Stuttgart- Ulm GmbH	Railway Tunnel, single track: length: 5,050 m and double track length: 1,050 m, A = 70-220 m ² ; Metrotunnel, 345 m single track and 575 double-track, A = 50-100 m ² ; 790 m rescue tunnel, A = 20-40 m ²	Drill and blast method and tunnel excavator
2012/2017	Large-Scale Emscher Sewerage Tunnel Project, Section 30 between Dortmund Mengede and Sewerage Plant Bottrop (Germany), Emschergenossenschaft	Length 47,000 m, construction of 130 excavation pits, 115 shafts, sewerage tunnel in 117 individual drives varying in lenght from under 20 m to 1,150 m	Pipe Jacking EPB Shield Hydroshield
2012/2013	Koralmbahn Graz-Klagenfurt, Koralmtunnel, Lot Ventilation Building Paierdorf B 11968 (Austria); ÖBB - Infrastruktur Bau AG	Ventilation Building northern tube, Enttrance cavern, length: 18 m, A = 120 m ² ; ventilation tunnel North, lenght: 93 m, A o 36 m ² , gradient 14 °, southern tube widening to full diameter; length: 250 m ventilation shaft finishing, H = 117 m, Maintaining exploration building during construction period	Drill and blast method and tunnel excavator

CONSTRUCTION PERIOD	PROJECT AND CLIENT	sco
2011/2018	Crossrail Western Tunnels incl. Bond Street and Tottenham Court Road Stations, London, Contracts C300 and C410 (United Kingdom); Crossrail Limited	2 pa eacl seg
2011/2015	Corrib Pipeline Tunnel (County Mayo, Ireland); Shell E&P Ireland Ltd.	Util diar rein by f
2010/2015	Sluiskil Canal Crossing,Terneuzen/Sluiskil (Netherlands); Province of Zeeland represented by BV Kanaal-kruising Sluiskil	Twi diar rein
2010/2016	Tunnel Kö-Bogen, Duesseldorf (Germany);	Inne con diap
2010/2012	Glendoe Recovery Project (Scotland, United Kingdom); Scottish Southern Energy	Con A = (len repa
2009/2015	Tunnel Luise-Kiesselbach-Platz, Munich (Germany); City of Munich	Inne Top app
2009/2013	Limmern Access Tunnel I (Switzerland); Kraftwerke Linth-Limmern AG	Acco diar and shot
2009/2013	Koralm Railway Line between Graz and Klagenfurt, B1961 (Austria); ÖBB Infrastruktur Bau AG	Kora trac eac cove
2009/2012	German Unity Transport Project VDE 8, Upgraded and New Railway Lines between Nuremberg and Berlin (Germany); DB Netz AG	Brai Nur railv
2009/2012	German Unity Transport Project VDE8, Upgraded and New Railway Lines between Nuremberg and Berlin (Germany); DB Netz AG	Silb Leip tun
2009/2011	New Coal-Fired Power Plant in Wilhelmshaven (Germany) Lot C121; GDF SUEZ Energie Deutschland AG	Util eac usin
2008/2015	Schuman-Josaphat Tunnel (Belgium); Department Mobiliteit en Vervoer	Dou
2008/2013	Liefkenshoek Rail Link, Antwerp (Belgium); Infrabel	Dou diar linir
EDR chield	Hard Dock TDM	
Drill and blas	t method	hor
Road header	Gripper-TBM	

CONSTRUCTION METHOD
EPB shield
Hydroshield
Hydroschild
excavator and Top-Down method
Drill and blast method
Bored Piles, Top- Down Method, Cut and Cover method
Gripper-TBM
Drill and blast method and tunnel excavator
Drill and blast method and tunnel excavator
Drill and blast method and tunnel excavator
Pipe Jacking, Slurry Mode
Pipe Jacking, Open Mode, Top-Down Method
Hydroshield

Project References

CONSTRUCTION PERIOD	PROJECT AND CLIENT	SCOPE OF WORKS	CONSTRUCTION METHOD
2008/2010	Ems-Dollard Crossing (between Germany and the Netherlands); Nederlandse Gasunie	Utility tunnel for a gas pipeline; length: 4,050 m; shield diameter: 3.6 m; internal diameter: 3.0 m; steel fibre reinforced segmental lining	Hydroshield
2008/2012	Stafelter Tunnel (Luxembourg); Grand-Duché de Luxembourg, Ministère des Travaux Publics, represented by Administration des Ponts et Chaussées	2 double-lane motorway tunnels; length: 1,850 m each; excavated area = 74 - 114 m ²); 1,650 m are constructed using mining techniques and 200 m using the cut and cover method	Bagger- und Sprengvortrieb
2007/2014	Weinberg Tunnel, Sections 3.1 and 3.2, Zurich, as part of the Zurich Main Station-Altstetten-Oerlikon Diameter Line (Switzerland); SBB AG represented by Infrastruktur - Projekt Management Durchmesserlinie	Section 3.1: 220 running metres of longitudinal tunnels (excavated area: approx. 36 m ²) and 390 running metres of transverse tunnels (excavated area: 14 m ² - 17 m ²). Section 3.2: Double-track railway tunnel; total length: 4,537 m, of which 4,382 m are driven by convertible TBM (hard rock mode: 4,105 m, slurry mode: 277 m); TBM diameter: 11.23 m; internal diameter: 9.74 m; double lining: segmental lining with in-situ concrete inner lining with external water proofing. Escape and rescue tunnel; length 4,460 m; excavated by Gripper-TBM (4,390 m) and road header (70 m); shield diameter 4.75 m; internal diameter: 4.35 m; lining with shotcrete with wire mesh reinforcement and anchors	Hard Rock TBM and Hydroshield Gripper-TBM
2007/2013	Wehrhahnlinie Lot 2, Germany; City of Duesseldorf	Metro tunnel with connecting platform to Station Heinrich-Heine Allee,drive lenght: 75 m, Ground freezing	Drill and blast method
2007/2012	Diabolo Project, Brussels Airport (Belgium); Northern Diabolo nv (PPP company for the railway tunnel) and Via-Zaventem nv (PPP company for the road construction part)	2 TBM-driven single-track railway tunnels, length: approx. 1,100 m each, shield diameter: 8.27 m, internal diameter: 7.30 m, segmental lining; approx. 1,100 m of tunnel built using the top-down method; approx. 2,300 m of cut and cover tunnel	Mixshield
2007/2010	Koralm Railway Line between Graz and Klagenfurt, B1581 (Austria); ÖBB Infrastruktur Bau AG	Contract Section 3 - Hengsberg Tunnel; double-track railway tunnel, length: 1,700 m; 1,035 m mined tunnel; 450 m driven using the cut and cover method; 250 m built using the top-down method	Drill and blast method and tunnel excavator
2007/2009	Völkermarkt Bypass (Austria); Land Kärnten	Lilienberg Tunnel; two-lane road tunnel; length: 1,090 m	Drill and blast method and tunnel excavator
2007/2010	U6 Metro Link to Fasanenhof (Germany); Stuttgarter Straßenbahnen AG	Double-track metro tunnel; cut and cover tunnel, length: 852 m; mined tunnel, length: 380 m, excavated cross-section: 90 m ² ; sprayed concrete lining (SCL)	Tunnel excavator
2006/2012	Finne Tunnel (Germany); DB Netz AG, represented by DB Projekt Bau GmbH, Projektzentrum Leipzig	Single-track railway tunnel; length: 13,644 m; shield diameter: 10.88 m; internal diameter: 9.60 m; segmental lining	Hydroshield Hard Rock TBM
2006/2010	Roppen Tunnel, Second Tube (Austria); ASFINAG Baumanagement GmbH	Double-lane motorway tunnel; length: 5.095 m; sprayed concrete lining (SCL)	Drill and blast method
2006/2009	B 1 Federal Road Wiener Straße, Henndorf Bypass (Austria); Land Salzburg, Landesbaudirektion	Double-lane road tunnel; total length: 2,150 m; 1.4 km by drill and blast method in combination with tunnel excavator; 732 m by cut and cover method	Drill and blast method and tunnel excavator
2004/2010	Munich Metro, Line 3 North, Section 2, (Germany); Landeshauptstadt München, Baureferat U-Bahn	Single-track metro tunnel; length: 2,410 m; shield diameter: 7.34 m; internal diameter: 6.30 m; segmental lining	Hydroshield

CONS PERIO	TRUCTION D	PROJECT AND CLIENT	SCOPE OF WORKS	CONSTRUCTION METHOD
20	04/2009	Grouft Tunnel (Luxembourg); Administration des Ponts et des Chaussées	Twin-tube, double- and triple-lane motorway tunnels; l ength: 3,000 m each; A = 96 m ² and 174 m ² respectively; sprayed concrete lining	Drill and blast method and tunnel excavator
20	04/2008	Hubertus Tunnel, The Hague (Netherlands); Gemeente Den Haag	Road tunnel; length 2,980 m; shield diameter: 10.50 m; internal diameter: 9.40 m; segmental lining	Mixshield
20	003/2014	Cologne North-South Light Railway, Southern Section (Germany); KVB Kölner Verkehrsbetriebe AG	Single-track metro tunnel; length: 5,400 m; shield diameter: 8.39 m; internal diameter: 7.30 m; segmental lining	Mixshield
20	003/2011	Katzenberg Tunnel (Germany); DB Netz AG, represented by DB Projektbau GmbH, Projektzentrum Karlsruhe	Single-track railway tunnel; length: 17,968 m; shield diameter 11.12 m, internal diameter 9.60 m, segmental lining	EPB shield
20	03/2006	Tridel Tunnel, Lausanne (Switzerland); Tridel SA	Single-track railway tunnel; length: 3,600 m; A = 40 m ² ; single-pass lining with anchored shotcrete	Road header
20	03/2006	SMART Tunnel, Kuala Lumpur (Malaysia); MMC Eng. Group Bhd. / Gamuda Eng. Sdn. Joint Venture	Flood relief and road tunnel; length 5,230 m; shield diameter: 13.21 m; internal diameter: 11.83 m; segmental lining	Mixshield
20	02/2007	Vienna Metro, Line 2, Section 2, Taborstrasse (Austria); Wiener Linien GmbH & Co. KG	Single-track metro tunnel; length: 2,200 m; A = 39-44 m²; sprayed concrete lining (SCL)	Tunnel excavator
20	02/2005	Dortmund Ostentor Light Railway Line III, (Germany); Stadt Dortmund, Stadtbahnbauamt	Contract Section S10.1, 2nd Stage; 1,100 m NATM tunnel; 100 m closed ramp as a double-track rectangular cross- section; 120 m open ramp as a retained cut	Tunnel excavator
20	001/2005	Antwerp North-South Link (ASDAM), (Belgium); NMBS CCE Strategie Ontwikkeling	Single-track railway tunnel; length 2,456 m; shield diameter: 8.27 m; internal diameter: 7.30 m; segmental lining	Mixshield
20	001/2004	Channel Tunnel Rail Link, Contract C250, London (United Kingdom); Union Railways (North) Ltd.	Single-track railway tunnel; length 10,600 m; shield diameter: 8.15 m; internal diameter: 7.15 m; steel fibre reinforced segmental lining	EPB shield
20	00/2004	Oenzberg Tunnel (Switzerland); Schweizerische Bundesbahnen SBB, Projektgruppe Neubaustrecke Mattstetten-Rothrist	Double-track railway tunnel; total length: 3,161 m (2,265 m driven by TBM); shield diameter: 12.34 m; internal diameter: 10.84 m; double lining consisting of reinforced concrete segments and in-situ concrete inner lining with external water proofing. Branch off tunnels; lengths: 314 m and 440 m (A = 80 m ²); excavated by road header	Hard Rock TBM and Hydroshield Road header
20	00/2003	Athens Metro, Line 2 Extension, Sepolia-Thivon Tunnel (Greece); Attiko Metro A.E.	Double-track metro tunnel; length: 2,700 m; shield diameter: 9.50 m; internal diameter: 8.48 m; segmental lining	Open Mode
20	000/2001	Passenger Transport System at Zurich Airport (Switzerland); Flughafen Immobiliengesellschaft (FIG)	Passenger transport tunnel; length 1,800 m; shield diameter: 6.28 m; internal diameter: 5.40 m; segmental lining	Mixshield
E	PB shield Fill and blas	Hard Rock TBM	Mixshield/Hydroshield	
Road header Gripper-TBM Tunnel excavator				

CONSTRUCTION PERIOD	PROJECT AND CLIENT	SCOPE OF WORKS	CONSTRUCTION METHOD
1999/2008	Uetliberg Tunnel (Switzerland); Baudirektion Kanton Zürich	Two parallel triple-lane motorway tunnels, length: 2 x 4.4 km; excavated area: 160 m ² ; soft ground tunnelling: 1.6 km in 7 sections; drill and blast tunnelling: 1.2 km in 3 sections; Pilot TBM, diameter: 5 m: 5.6 km (extended to 14.4 m diameter:); cut and cover: 0.4 km	TBM and TBE Drill and blast method and tunnel excavator
1999/2003	Rennsteig Tunnel on BAB A71 Erfurt-Schweinfurt (Germany); DEGES Deutsche Einheit Berlin Fernstraßenplanungs- und bau GmbH	Two-lane motorway tunnel; twin-tube; length: 2 x 7.9 km (A= 80 m²); sprayed concrete lining (SCL)	Drill and blast method
1999/2002	Velbert-Langenberg Tunnel (Germany); Landschaftsverband Rheinland/Essen	Double-lane road tunnel; length 486 m (A = 85 m²); sprayed concrete lining (SCL)	Drill and blast method in combination with tunnel excavator
1998/2003	CERN Nuclear Research Centre, Geneva (Switzerland); CERN - European Organization for Nuclear Research	Construction of industrial buildings on ground level and underground buildings for ATLAS-Detector; 3 shafts, max. diameter: 25 m, 100 m deep; 2 caverns of 70,000 m ³ and 100,000 m ³ ; various smaller tunnels	SCL method with tunnel excavator and chisel
1998/1999	New baggage system at Zurich Airport (Switzerland); Flughafen Immobiliengesellschaft Zurich (FIG)	Baggage tunnel; length 490 m; shield diameter: 6.28 m; internal diameter: 5.40 m; segmental lining	Mixshield
1998/2002	Botlek Tunnel (Netherlands); NS Railinfrabeheer (Dutch Railway)	Single-track railway tunnel; length 3,670 m; shield diameter: 9.75 m; internal diameter: 8.65 m; segmental lining	EPB shield
1997/2003	Westerschelde Tunnel (Netherlands); Ministerie van Verkeer en Waterstaat, Directoraat-Generaal Rijkswaterstaat	Road tunnel; length: 13,200 m; shield diameter: 11.34 m; internal diameter: 10.10 m; segmental lining	Mixshield
1997	Singapore Metro, North East Line, Contract C704 (Singapore); Land Transport Authority of Singapore (LTA)	Single-track metro tunnel; length 5,100 m; shield diameter: 6.56 m; internal diameter: 5.80 m; segmental lining	EPB shield
1997/2003	Zimmerberg Base Tunnel, second double-track line between Zurich Main Station and Thalwil, Section 2.01 (Switzerland); Schweizerische Bundesbahnen (SBB)	Double-track railway tunnel; length 2,619 m; shield diameter: 12.34 m; internal diameter: 10.84 m; double lining consisting of reinforced concrete lining and in-situ inner lining with external water proofing	Hard Rock TBM Hydroshield
1997/2003	Zimmerberg Base Tunnel, second double-track line between Zurich Main Station and Thalwil, Section 3.01 (Switzerland); Schweizerische Bundesbahnen (SBB)	Double-track railway tunnel; length 6,421 m; shield diameter: 12.29 m; internal diameter: 10.84 m; double lining consisting of reinforced concrete lining and in-situ inner lining with external water proofing	Hard Rock TBM
1996/2001	New Cologne-Rhine/Main High-Speed Railway Line, Central Section, Lot B (Germany); Deutsche Bahn AG	Railway tunnels: Elzer Berg Tunnel (1,110 m); Himmelberg Tunnel (2,395 m); Wahnscheid Tunnel (735 m); Dickheck Tunnel (575 m); all: A = 147-164 m ² ; sprayed concrete lining (SCL)	Drill and blast method in combination with tunnel excavator
1996/2000	Munich Underground Railway, Line 2 East, Lot 2 Trudering (Germany); Landeshauptstadt München, U-Bahn-Referat	Metro tunnels; lengths: 3,200 m (A = 40 m ²) and 300 m (A = 80m ²); sprayed concrete lining (SCL)	Tunnel excavator
1996/2000	Rio Subterraneo Tunnel, Buenos Aires (Argentina); Aguas Argentinas S.A.	Water supply tunnel; length: 15,160 m; shield diameter: 4.35 m; internal diameter: 3.50 m; segmental lining	EPB shield
1996/1999	Izmir Light Rail Transit System (Turkey); City of Izmir	Double-track light rail tunnel; 1,388 m NATM tunnel (A = 64 m ²); 284 m station (A = 130 - 140 m ²); sprayed concrete lining (SCL); 2 parallel, single-track shield- driven tunnels; total length: 2,750 m; shield diameter: 6.54 m; internal diameter: 5.92 m; segmental lining	Road header EPB shield

	CONSTRUCTION PERIOD	PROJECT AND CLIENT	SCOPE OF WORKS	CONSTRUCTION METHOD
	1996/1998	Nuremberg Underground Railway, Line 2 North, Lot 4.1 (Germany); Stadt Nürnberg, Tiefbauamt	Ziegelstein Station and 1,540 m single-track metro tunnel (A = 38 m^2); sprayed concrete lining (SCL)	Road header
	1995/2003	Fourth tunnel under the river Elbe in Hamburg (Germany), Federal Republic of Germany	Road tunnel; lenght: 2,561 m, shield diameter: 13.75 m, internal diameter: 12.35 m, incl. start shaft (42.5 m x 22.5 m) and end shaft (20 m x 20 m), single-skin precast concrete segment lining.	Mixshield
	1995/1999	Tweede Heinenoordtunnel (Netherlands); Directoraat-Generaal Rijkswaterstaat, Ministerie van Verkeer en Waterstaat	Road tunnel; length: 1,900 m; shield diameter: 8.55 m; internal diameter: 7.60 m; segmental lining	Mixshield
	1995/1999	Engelberg Base Tunnel (Germany); Land Baden- Württemberg; Landesamt für Straßenwesen	Two parallel motorway tunnels; length: 2,600 m each (A = 200-330 m²); sprayed concrete lining (SCL)	Drill and blast method
	1994/2001	Xiaolangdi Multipurpose Dam (China); Yellow River Water and Hydroelectric Power Development Corporation	Intake structure, tunnels, plunge pool, spillway, concrete lining, tunnel construction; sprayed concrete lining (SCL)	Drill and blast method
	1993/1996	Feldmoching - Moosach Main Sewer (Germany); Landeshauptstadt München, Baureferat Kanalbau	Main sewer; length: 200 m (A = 28 m²); sprayed concrete lining (SCL)	Tunnel excavator with ground freezing
	1991/1993	Vienna Underground Railway, Line U6/11 Spittelau (Austria); Stadt Wien, Stadtverwaltung Abt. 38	Tunnel excavation by tunnel excavator, sprayed concrete lining (SCL)	Tunnel excavator
	1988/1991	Munich Underground Railway, Weyprechtstraße Station (Germany); Landeshauptstadt München, U-Bahn-Referat	Weyprechtstrasse Station and single-track metro tunnel; length: 1,090 m (A = 38 m²); sprayed concrete lining (SCL)	Tunnel excavator
	1986/1993	Essen Light Rail, Section 32/33 (Germany); Stadt Essen, U-Bahn-Bauamt	Section 32: 200 m light rail tunnel; Section 33: approx. 160 m light rail tunnel; 334 m station tunnel; 3 nos. cross passages in NATM under compressed air; water pressure up to 1.7 bar.	EPB shield and tunnel excavator under compressed air
	1985/1988	Munich Underground Railway, Line 3 South, Section 9.2 (Germany); Landeshauptstadt München, U-Bahn- Referat	Single-track tunnel between Baseler Str. Station and Fürstenried West Station; length: 1,300 m (A = 38 m ²); sprayed concrete lining (SCL)	Tunnel excavator
	1982/1987	Munich Underground Railway Line 5/9, Section 9.2 (Germany); Landeshauptstadt München, U-Bahn- Referat	Ostbahnhof Station and tunnels; 1,350 m single-track tunnel (A = 38 m ²); 240 m double-track tunnel (A = 75-115 m ²); sprayed concrete lining (SCL)	Tunnel excavator under compressed air
	1982/1986	Munich Underground Railway, Section 7, (Germany); Landeshauptstadt München, U-Bahn-Referat	Lehel Station and tunnels; 2,145 m single-track tunnel (A = 38 m²); 340 m station tunnel (A = 85 m²); sprayed concrete lining (SCL)	Tunnel excavator under compressed air
I	EPB shield	Hard Rock TBM	Mixshield/Hydroshield	
	Drill and blas	t method Cut and cover me	thod Top-Down method	
I	Road header	Gripper-TBM	Tunnel excavator	

74|75